找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Women in Numbers Europe III; Research Directions Alina Carmen Cojocaru,Sorina Ionica,Elisa Lorenzo Book 2021 The Authors and the Associat

[復(fù)制鏈接]
樓主: JADE
31#
發(fā)表于 2025-3-26 21:37:35 | 只看該作者
32#
發(fā)表于 2025-3-27 01:13:53 | 只看該作者
33#
發(fā)表于 2025-3-27 08:01:47 | 只看該作者
34#
發(fā)表于 2025-3-27 09:32:44 | 只看該作者
35#
發(fā)表于 2025-3-27 14:51:59 | 只看該作者
Adelina Manz??eanu,Rachel Newton,Ekin Ozman,Nicole Sutherland,Rabia Gül?ah Uysalpproach of collaborative processes that will appeal to both This publication focuses on the conditions for promising collaboration. Collaboration is becoming a dominant instrument in today‘s economy and society and manifests itself in many shapes and forms. It is a challenging instrument which still
36#
發(fā)表于 2025-3-27 18:08:46 | 只看該作者
Diana Savin,Vincenzo Acciaroes of employees, and to truly revolutionize the role of business in the world. Creating Enlightened Organizations is the first book to provide a truly comprehensive approach to creating an organization designed to unleash full human potential in the workplace. Businesses have learned how to involve
37#
發(fā)表于 2025-3-27 23:00:36 | 只看該作者
From ,-modular to ,-adic Langlands Correspondences for ,: Deformations in the Non-supercuspidal CasThis paper surveys what is known about (conjectural) .-adic and .-modular semisimple Langlands correspondences in the non-supercuspidal setting for the unramified quasi-split unitary group .. It focuses in particular on the potential of deformation theory to relate these correspondences.
38#
發(fā)表于 2025-3-28 05:49:25 | 只看該作者
Integers Represented by Ternary Quadratic Forms,In the case of the representation of an integer by an indefinite ternary quadratic form, the violation of the integral Hasse principle can be explained via the Brauer-Manin obstruction. In this note, we study the occurrences of this phenomenon for several families of non-diagonal ternary quadratic forms.
39#
發(fā)表于 2025-3-28 06:24:48 | 只看該作者
40#
發(fā)表于 2025-3-28 11:40:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宽城| 常德市| 溧水县| 永年县| 霸州市| 梨树县| 余庆县| 安新县| 兴安盟| 柏乡县| 龙南县| 宜兴市| 大方县| 北流市| 遂昌县| 微山县| 阳高县| 大英县| 瑞金市| 金塔县| 衡阳县| 勃利县| 日土县| 寿宁县| 和政县| 凤凰县| 宝清县| 余庆县| 宝兴县| 闵行区| 电白县| 三原县| 梅河口市| 宝坻区| 突泉县| 汪清县| 获嘉县| 白沙| 龙川县| 徐闻县| 松滋市|