找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Women in Numbers Europe II; Contributions to Num Irene I. Bouw,Ekin Ozman,Rachel Newton Conference proceedings 2018 The Author(s) and the A

[復(fù)制鏈接]
樓主: 誓約
21#
發(fā)表于 2025-3-25 06:44:18 | 只看該作者
22#
發(fā)表于 2025-3-25 07:42:49 | 只看該作者
23#
發(fā)表于 2025-3-25 13:38:00 | 只看該作者
,On Birch and Swinnerton-Dyer’s Cubic Surfaces,ondence between this failure and the Brauer–Manin obstruction, recently discovered by Manin. We extend their work to show that a larger set of cubic surfaces has a Brauer–Manin obstruction to the Hasse principle, thus verifying the Colliot-Thélène–Sansuc conjecture for infinitely many cubic surfaces
24#
發(fā)表于 2025-3-25 16:40:27 | 只看該作者
Conference proceedings 2018mber theory and arithmetic geometry. Research reports from projects started at the conference, expository papers describing ongoing research, and contributed papers from women number theorists outside the conference make up this diverse volume. Topics cover a broad range of topics such as arithmetic
25#
發(fā)表于 2025-3-25 23:56:22 | 只看該作者
Lower Bounds for Heights in Relative Galois Extensions,., depending on the degree of . and the number of conjugates of . which are multiplicatively independent over .. As a consequence, we obtain a height bound for such . that is independent of the multiplicative independence condition.
26#
發(fā)表于 2025-3-26 03:48:38 | 只看該作者
On the Carlitz Rank of Permutation Polynomials Over Finite Fields: Recent Developments, problem to the well-known Chowla–Zassenhaus conjecture is described. We also present some initial observations on the iterations of a permutation polynomial . and hence on the order of . as an element of the symmetric group ...
27#
發(fā)表于 2025-3-26 05:13:51 | 只看該作者
28#
發(fā)表于 2025-3-26 10:32:43 | 只看該作者
,On Birch and Swinnerton-Dyer’s Cubic Surfaces,ondence between this failure and the Brauer–Manin obstruction, recently discovered by Manin. We extend their work to show that a larger set of cubic surfaces has a Brauer–Manin obstruction to the Hasse principle, thus verifying the Colliot-Thélène–Sansuc conjecture for infinitely many cubic surfaces.
29#
發(fā)表于 2025-3-26 15:22:32 | 只看該作者
30#
發(fā)表于 2025-3-26 20:49:37 | 只看該作者
Women in Numbers Europe II978-3-319-74998-3Series ISSN 2364-5733 Series E-ISSN 2364-5741
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 19:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉善左旗| 射阳县| 澄城县| 鸡东县| 乾安县| 友谊县| 紫云| 凤山市| 丁青县| 无锡市| 绩溪县| 祁东县| 商河县| 兴隆县| 社会| 广水市| 本溪| 广平县| 衡南县| 察哈| 滨海县| 桂东县| 甘泉县| 沿河| 吉水县| 永宁县| 湖口县| 瓮安县| 霍州市| 汝州市| 巩义市| 乃东县| 胶州市| 商丘市| 尼玛县| 固原市| 锦州市| 阳新县| 小金县| 措美县| 兰州市|