找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Women in Analysis and PDE; Marianna Chatzakou,Michael Ruzhansky,Diana Stoeva Conference proceedings 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: deflate
41#
發(fā)表于 2025-3-28 15:29:21 | 只看該作者
42#
發(fā)表于 2025-3-28 22:43:26 | 只看該作者
43#
發(fā)表于 2025-3-29 00:36:13 | 只看該作者
978-3-031-57007-0The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
44#
發(fā)表于 2025-3-29 06:38:09 | 只看該作者
45#
發(fā)表于 2025-3-29 07:59:38 | 只看該作者
Recovery of an Initial Condition from Later Time Samples,n. This framework combines spatiotemporal samples to produce various states of approximations and eventually reconstructs the solution exactly. Our model covers multiple initial value problems under the assumption that the initial conditions function is in a select function class.
46#
發(fā)表于 2025-3-29 11:30:43 | 只看該作者
47#
發(fā)表于 2025-3-29 17:40:41 | 只看該作者
48#
發(fā)表于 2025-3-29 23:44:51 | 只看該作者
On Octonionic Harmonic Projection Operators,th .. In this paper, we start to study these projectors in the octonionic setting, that is, when . and .. We also formulate a conjecture about the norm of harmonic projection operators, considered as operators from . onto ., for . and ..
49#
發(fā)表于 2025-3-30 00:54:26 | 只看該作者
50#
發(fā)表于 2025-3-30 06:22:14 | 只看該作者
,On the Green’s Function of the Perturbed Laplace-Beltrami Operator with a Finite Number of Punctures, some properties of Green’s function for the Laplace-Beltrami operator on the two-dimensional sphere in the three-dimensional Euclidean space, which have previously been studied in detail, are presented here. The Green’s function of the Laplace-Beltrami operator on the two-dimensional sphere with a finite number of punctured points is presented.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
息烽县| 齐齐哈尔市| 阿克| 乐平市| 安岳县| 剑阁县| 成武县| 南丹县| 会昌县| 弥渡县| 茂名市| 普兰县| 四子王旗| 买车| 济阳县| 峨山| 霞浦县| 绥阳县| 江口县| 三门县| 礼泉县| 靖宇县| 祁阳县| 巩留县| 桐庐县| 岑溪市| 曲水县| 开封县| 老河口市| 石嘴山市| 依安县| 莆田市| 梓潼县| 固安县| 饶平县| 汉川市| 九寨沟县| 栾城县| 绥棱县| 阳信县| 桂林市|