找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Women in Analysis and PDE; Marianna Chatzakou,Michael Ruzhansky,Diana Stoeva Conference proceedings 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: deflate
41#
發(fā)表于 2025-3-28 15:29:21 | 只看該作者
42#
發(fā)表于 2025-3-28 22:43:26 | 只看該作者
43#
發(fā)表于 2025-3-29 00:36:13 | 只看該作者
978-3-031-57007-0The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
44#
發(fā)表于 2025-3-29 06:38:09 | 只看該作者
45#
發(fā)表于 2025-3-29 07:59:38 | 只看該作者
Recovery of an Initial Condition from Later Time Samples,n. This framework combines spatiotemporal samples to produce various states of approximations and eventually reconstructs the solution exactly. Our model covers multiple initial value problems under the assumption that the initial conditions function is in a select function class.
46#
發(fā)表于 2025-3-29 11:30:43 | 只看該作者
47#
發(fā)表于 2025-3-29 17:40:41 | 只看該作者
48#
發(fā)表于 2025-3-29 23:44:51 | 只看該作者
On Octonionic Harmonic Projection Operators,th .. In this paper, we start to study these projectors in the octonionic setting, that is, when . and .. We also formulate a conjecture about the norm of harmonic projection operators, considered as operators from . onto ., for . and ..
49#
發(fā)表于 2025-3-30 00:54:26 | 只看該作者
50#
發(fā)表于 2025-3-30 06:22:14 | 只看該作者
,On the Green’s Function of the Perturbed Laplace-Beltrami Operator with a Finite Number of Punctures, some properties of Green’s function for the Laplace-Beltrami operator on the two-dimensional sphere in the three-dimensional Euclidean space, which have previously been studied in detail, are presented here. The Green’s function of the Laplace-Beltrami operator on the two-dimensional sphere with a finite number of punctured points is presented.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平乐县| 磴口县| 广昌县| 乡城县| 静乐县| 宜章县| 武平县| 新河县| 邢台市| 梓潼县| 方正县| 措美县| 佛冈县| 海盐县| 留坝县| 鄱阳县| 揭西县| 绥阳县| 东海县| 兴义市| 靖边县| 华亭县| 攀枝花市| 盐城市| 绥阳县| 阳泉市| 县级市| 宁夏| 青海省| 张家口市| 万州区| 丹巴县| 台南市| 苏尼特右旗| 舞阳县| 达州市| 客服| 通河县| 三江| 肃宁县| 奈曼旗|