找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: What Is Integrability?; Vladimir E. Zakharov Book 1991 Springer-Verlag Berlin Heidelberg 1991 Hamiltonsysteme.Integrabilit?t.KdV Gleichung

[復(fù)制鏈接]
查看: 55843|回復(fù): 34
樓主
發(fā)表于 2025-3-21 17:19:25 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱What Is Integrability?
編輯Vladimir E. Zakharov
視頻videohttp://file.papertrans.cn/1028/1027745/1027745.mp4
叢書名稱Springer Series in Nonlinear Dynamics
圖書封面Titlebook: What Is Integrability?;  Vladimir E. Zakharov Book 1991 Springer-Verlag Berlin Heidelberg 1991 Hamiltonsysteme.Integrabilit?t.KdV Gleichung
描述The idea of devoting a complete book to this topic was born at one of the Workshops on Nonlinear and Turbulent Processes in Physics taking place reg- ularly in Kiev. With the exception of E. D. Siggia and N. Ercolani, all authors of this volume were participants at the third of these workshops. All of them were acquainted with each other and with each other‘s work. Yet it seemed to be somewhat of a discovery that all of them were and are trying to understand the same problem - the problem of integrability of dynamical systems, primarily Hamiltonian ones with an infinite number of degrees of freedom. No doubt that they (or to be more exact, we) were led to this by the logical process of scientific evolution which often leads to independent, almost simultaneous discoveries. Integrable, or, more accurately, exactly solvable equations are essential to theoretical and mathematical physics. One could say that they constitute the "mathematical nucleus" of theoretical physics whose goal is to describe real clas- sical or quantum systems. For example, the kinetic gas theory may be considered to be a theory of a system which is trivially integrable: the system of classical noninteracting par
出版日期Book 1991
關(guān)鍵詞Hamiltonsysteme; Integrabilit?t; KdV Gleichung; Painleve Test; applied mathematics; degrees of freedom; dy
版次1
doihttps://doi.org/10.1007/978-3-642-88703-1
isbn_softcover978-3-642-88705-5
isbn_ebook978-3-642-88703-1Series ISSN 0940-2535
issn_series 0940-2535
copyrightSpringer-Verlag Berlin Heidelberg 1991
The information of publication is updating

書目名稱What Is Integrability?影響因子(影響力)




書目名稱What Is Integrability?影響因子(影響力)學(xué)科排名




書目名稱What Is Integrability?網(wǎng)絡(luò)公開度




書目名稱What Is Integrability?網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱What Is Integrability?被引頻次




書目名稱What Is Integrability?被引頻次學(xué)科排名




書目名稱What Is Integrability?年度引用




書目名稱What Is Integrability?年度引用學(xué)科排名




書目名稱What Is Integrability?讀者反饋




書目名稱What Is Integrability?讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:10:40 | 只看該作者
https://doi.org/10.1007/978-3-642-88703-1Hamiltonsysteme; Integrabilit?t; KdV Gleichung; Painleve Test; applied mathematics; degrees of freedom; dy
板凳
發(fā)表于 2025-3-22 02:43:57 | 只看該作者
978-3-642-88705-5Springer-Verlag Berlin Heidelberg 1991
地板
發(fā)表于 2025-3-22 07:03:11 | 只看該作者
5#
發(fā)表于 2025-3-22 11:18:14 | 只看該作者
Book 1991ularly in Kiev. With the exception of E. D. Siggia and N. Ercolani, all authors of this volume were participants at the third of these workshops. All of them were acquainted with each other and with each other‘s work. Yet it seemed to be somewhat of a discovery that all of them were and are trying t
6#
發(fā)表于 2025-3-22 14:51:27 | 只看該作者
7#
發(fā)表于 2025-3-22 19:11:27 | 只看該作者
8#
發(fā)表于 2025-3-23 00:07:12 | 只看該作者
9#
發(fā)表于 2025-3-23 01:33:38 | 只看該作者
10#
發(fā)表于 2025-3-23 06:09:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
米林县| 安达市| 桐柏县| 英德市| 山阴县| 蒲江县| 全椒县| 沐川县| 陈巴尔虎旗| 宁晋县| 婺源县| 郸城县| 黄山市| 华安县| 原阳县| 宾阳县| 武宣县| 怀远县| 绍兴县| 长治市| 满城县| 墨脱县| 梅河口市| 博乐市| 井陉县| 仁怀市| 社旗县| 宕昌县| 巢湖市| 乌鲁木齐市| 巴南区| 淄博市| 循化| 策勒县| 文水县| 庄河市| 清新县| 汝南县| 古浪县| 上林县| 禹城市|