找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Well-Posed Nonlinear Problems; A Study of Mathemati Mircea Sofonea Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusi

[復(fù)制鏈接]
查看: 16328|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:04:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Well-Posed Nonlinear Problems
副標(biāo)題A Study of Mathemati
編輯Mircea Sofonea
視頻videohttp://file.papertrans.cn/1027/1026901/1026901.mp4
概述Presents an original method that unifies the mathematical theories of well-posed problems and contact mechanics.Offers a well-posedness theory in which every convergence result can be interpreted as a
叢書名稱Advances in Mechanics and Mathematics
圖書封面Titlebook: Well-Posed Nonlinear Problems; A Study of Mathemati Mircea Sofonea Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusi
描述.This monograph presents an original method to unify the mathematical theories of well-posed problems and contact mechanics. The author uses a new concept called the Tykhonov triple to develop a well-posedness theory in which every convergence result can be interpreted as a well-posedness result. This will be useful for studying a wide class of nonlinear problems, including fixed-point problems, inequality problems, and optimal control problems. Another unique feature of the manuscript is the unitary treatment of mathematical models of contact, for which new variational formulations and convergence results are presented. .Well-Posed Nonlinear Problems. will be a valuable resource for PhD students and researchers studying contact problems. It will also be accessible to interested researchers in related fields, such as physics, mechanics, engineering, and operations research..
出版日期Book 2023
關(guān)鍵詞Well-posed problem; Well-posed nonlinear problems; Well-posedness; Nonlinear problems; Fixed-point probl
版次1
doihttps://doi.org/10.1007/978-3-031-41416-9
isbn_softcover978-3-031-41418-3
isbn_ebook978-3-031-41416-9Series ISSN 1571-8689 Series E-ISSN 1876-9896
issn_series 1571-8689
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Well-Posed Nonlinear Problems影響因子(影響力)




書目名稱Well-Posed Nonlinear Problems影響因子(影響力)學(xué)科排名




書目名稱Well-Posed Nonlinear Problems網(wǎng)絡(luò)公開度




書目名稱Well-Posed Nonlinear Problems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Well-Posed Nonlinear Problems被引頻次




書目名稱Well-Posed Nonlinear Problems被引頻次學(xué)科排名




書目名稱Well-Posed Nonlinear Problems年度引用




書目名稱Well-Posed Nonlinear Problems年度引用學(xué)科排名




書目名稱Well-Posed Nonlinear Problems讀者反饋




書目名稱Well-Posed Nonlinear Problems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:09:36 | 只看該作者
Inclusionshonov triples, together with several convergence results, including a convergence criterion. We extend a part of these results to a history-dependent inclusion. The proofs are based on the results obtained in Chap. ., in the study of fixed point problems. Finally, we consider a history-dependent var
板凳
發(fā)表于 2025-3-22 03:16:37 | 只看該作者
Minimization and Optimal Control Problemsg generalized well-posedness in the sense of Hadamard. Moreover, we show that, under strict and strong convexity assumptions, these results provide the weak and strong well-posedness of the corresponding problems. Next, we extend our study to optimal control problems for which we prove well-posednes
地板
發(fā)表于 2025-3-22 05:54:40 | 只看該作者
5#
發(fā)表于 2025-3-22 10:34:32 | 只看該作者
6#
發(fā)表于 2025-3-22 15:53:02 | 只看該作者
Quasistatic Contact Problemson that gathers the corresponding equations, boundary, and initial conditions. Then we list the assumptions on the data and derive a variational formulation, which is either in the form of a fixed point problem, a Volterra-type integral equation, a history-dependent inclusion, or a history-dependent
7#
發(fā)表于 2025-3-22 20:13:53 | 只看該作者
Book 2023cept called the Tykhonov triple to develop a well-posedness theory in which every convergence result can be interpreted as a well-posedness result. This will be useful for studying a wide class of nonlinear problems, including fixed-point problems, inequality problems, and optimal control problems.
8#
發(fā)表于 2025-3-22 23:19:09 | 只看該作者
9#
發(fā)表于 2025-3-23 02:04:30 | 只看該作者
10#
發(fā)表于 2025-3-23 08:23:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 20:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东乌珠穆沁旗| 丹东市| 宜君县| 平果县| 通化市| 嘉义市| 延津县| 江山市| 竹溪县| 锦州市| 宜都市| 大同市| 进贤县| 星座| 柳河县| 纳雍县| 海盐县| 泸西县| 汝城县| 华阴市| 平定县| 镇雄县| 库伦旗| 临沂市| 兴仁县| 永福县| 廊坊市| 开化县| 万宁市| 绥德县| 伊春市| 太仓市| 宿州市| 张家界市| 秦皇岛市| 吴川市| 旺苍县| 清涧县| 三门峡市| 凯里市| 昌都县|