找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Weighted and Fuzzy Graph Theory; Sunil Mathew,John N. Mordeson,M. Binu Book 2023 The Editor(s) (if applicable) and The Author(s), under ex

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 06:19:18 | 只看該作者
Book 2023show how results from ordinary mathematics can be carried over to fuzzy mathematics. We focus on the concepts connectivity, degree sequences and saturation, and intervals and gates in weighted graphs..
22#
發(fā)表于 2025-3-25 08:06:24 | 只看該作者
Graphs and Weighted Graphs,ne of the most preeminent ways of applying mathematics in real-world scenario involves modeling using graph theory. It is because of its instinctual diagrammatic portrayal. Graphs have been found to be helpful in modeling real-world problems.
23#
發(fā)表于 2025-3-25 15:40:08 | 只看該作者
24#
發(fā)表于 2025-3-25 19:02:02 | 只看該作者
25#
發(fā)表于 2025-3-25 22:50:26 | 只看該作者
26#
發(fā)表于 2025-3-26 04:11:24 | 只看該作者
Intervals and Gates,t ., then . is called the central vertex of .. Here . denotes the minimum. Also, . is the radius of . with respect to the metric .. The center of . denoted by . is the subgraph of . induced by the central vertices of . with respect to .. An eccentric vertex of . with respect to . is that vertex . such that ..
27#
發(fā)表于 2025-3-26 06:47:49 | 只看該作者
Distance and Convexity,n weighted graphs also. The distance between two vertices in a weighted graph is defined as the minimum of the sum of weights over all geodesics connecting them. This section defines a new kind of distance in 2-connected weighted graphs named as the weighted distance.
28#
發(fā)表于 2025-3-26 08:48:01 | 只看該作者
29#
發(fā)表于 2025-3-26 13:57:36 | 只看該作者
Intervals and Gates,t ., then . is called the central vertex of .. Here . denotes the minimum. Also, . is the radius of . with respect to the metric .. The center of . denoted by . is the subgraph of . induced by the central vertices of . with respect to .. An eccentric vertex of . with respect to . is that vertex . such that ..
30#
發(fā)表于 2025-3-26 16:55:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
始兴县| 雅安市| 红河县| 施秉县| 成武县| 辽中县| 西青区| 荃湾区| 剑川县| 秭归县| 都兰县| 万盛区| 湘西| 龙山县| 建湖县| 定兴县| 灵山县| 新源县| 井冈山市| 佛坪县| 仪征市| 永嘉县| 马尔康县| 永顺县| 濮阳县| 云龙县| 安化县| 麻栗坡县| 通化县| 金乡县| 榆中县| 巴马| 千阳县| 融水| 城步| 本溪市| 新竹县| 当涂县| 甘南县| 厦门市| 临朐县|