找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Weighted Empirical Processes in Dynamic Nonlinear Models; Hira L. Koul Book 2002Latest edition Springer Science+Business Media New York 20

[復(fù)制鏈接]
樓主: Forbidding
11#
發(fā)表于 2025-3-23 13:43:00 | 只看該作者
Hira L. Koulems, reduce costs and better understand customer needs.?Industrial partners involved inManutelligence provide a clear overview of the project’s outcomes, and demonstrate how its technological solutions can be used to improve the design of product-service systems and the management of product-service
12#
發(fā)表于 2025-3-23 14:46:30 | 只看該作者
on risk measures in the framework of insurance premiums are also considered. The numerous exercises contained in .Modern Actuarial Risk Theory., together with the hints for solving the more difficult ones and the numerical answers to many others, make the book useful as a textbook. Some important practical pa978-0-306-47603-7
13#
發(fā)表于 2025-3-23 20:16:10 | 只看該作者
14#
發(fā)表于 2025-3-24 01:12:44 | 只看該作者
Introduction, (W.E.P.) corresponding to the random variables (r.v.’s) ., ..., . and the non-random real weights ., ..., . is defined to be .The weights {.} need not be nonnegative.
15#
發(fā)表于 2025-3-24 04:37:00 | 只看該作者
16#
發(fā)表于 2025-3-24 06:53:33 | 只看該作者
Linear Rank and Signed Rank Statistics,Let {., .} be as in (2.2.23) and {.} be . × 1 real vectors. The rank and the absolute rank of the . residual for 1 ≤ . ≤ ., . ∈ ?., are defined, respectively, as .% MathType!End!2!1!Let . be a nondecreasing real valued function on [0,1] and define . for . ∈ ?., where
17#
發(fā)表于 2025-3-24 12:05:24 | 只看該作者
Introduction, (W.E.P.) corresponding to the random variables (r.v.’s) ., ..., . and the non-random real weights ., ..., . is defined to be .The weights {.} need not be nonnegative.
18#
發(fā)表于 2025-3-24 15:27:38 | 只看該作者
,Asymptotic Properties of W.E.P.’s,Let, for each . ≥ 1, ., …, . be independent r.v.’s taking values in [0,1] with respective d.f.’s ., …, . and ., …, . be real numbers. Define {fy(2.1.1)|15-1} Observe that . belongs to .[0,1] for each . and any triangular array {., 1 ≤ . ≤ .}, while . of (1.4.1) belongs to .(?) for each . and any triangular array {., 1 ≤ . ≤ .}.
19#
發(fā)表于 2025-3-24 20:48:06 | 只看該作者
20#
發(fā)表于 2025-3-25 00:33:40 | 只看該作者
Linear Rank and Signed Rank Statistics,Let {., .} be as in (2.2.23) and {.} be . × 1 real vectors. The rank and the absolute rank of the . residual for 1 ≤ . ≤ ., . ∈ ?., are defined, respectively, as .% MathType!End!2!1!Let . be a nondecreasing real valued function on [0,1] and define . for . ∈ ?., where
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 00:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
迁安市| 溧阳市| 蕲春县| 昆明市| 元朗区| 玉山县| 从化市| 遂昌县| 双鸭山市| 招远市| 横峰县| 大连市| 英超| SHOW| 汝城县| 扬中市| 卫辉市| 万荣县| 贵南县| 南溪县| 鸡泽县| 盐源县| 雅江县| 英超| 清水河县| 祥云县| 柏乡县| 孙吴县| 同心县| 菏泽市| 和硕县| 宜州市| 庆阳市| 贵溪市| 宁强县| 澳门| 白沙| 成都市| 宜兰县| 长丰县| 长寿区|