找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Weighted Automata, Formal Power Series and Weighted Logic; Laura Wirth Book 2022 The Editor(s) (if applicable) and The Author(s), under ex

[復制鏈接]
樓主: 呻吟
11#
發(fā)表于 2025-3-23 11:02:36 | 只看該作者
Languages, Automata and Monadic Second-Order Logic,he starting point of those in the weighted setting that will be considered in the subsequent chapters. Throughout this chapter, we further establish a clear overview over the classical results from Theoretical Computer Science, whose extensions and generalizations we will derive in the subsequent chapters.
12#
發(fā)表于 2025-3-23 14:31:40 | 只看該作者
13#
發(fā)表于 2025-3-23 19:19:36 | 只看該作者
14#
發(fā)表于 2025-3-23 23:40:26 | 只看該作者
15#
發(fā)表于 2025-3-24 02:54:52 | 只看該作者
,The Kleene–Schützenberger Theorem,ve extensions of the classical ones. In doing so, he extended the language-theoretic concept of recognizability to formal power series with coefficients in an arbitrary semiring. On the other hand, Schützenberger also investigated rational power series, which form a generalization of rational languages.
16#
發(fā)表于 2025-3-24 09:06:52 | 只看該作者
Weighted Monadic Second-Order Logic and Weighted Automata,eighted automata, and characterized their behaviors as rational formal power series. Hence, he established a generalization of Kleene’s Theorem, which we have presented in Chapter 4. In 2005, Droste and Gastin [5] extended the Büchi–Elgot–Trakhtenbrot Theorem to the realm of formal power series.
17#
發(fā)表于 2025-3-24 11:36:39 | 只看該作者
BestMastershttp://image.papertrans.cn/w/image/1021967.jpg
18#
發(fā)表于 2025-3-24 15:53:47 | 只看該作者
19#
發(fā)表于 2025-3-24 22:26:45 | 只看該作者
978-3-658-39322-9The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
20#
發(fā)表于 2025-3-25 02:41:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
九龙坡区| 大埔县| 定边县| 深圳市| 贵南县| 朝阳区| 读书| 乌审旗| 虹口区| 青冈县| 乌苏市| 会同县| 茌平县| 义乌市| 乐东| 韶关市| 合水县| 莱芜市| 西和县| 尼勒克县| 安康市| 鸡泽县| 竹山县| 渝北区| 长白| 铁力市| 瑞昌市| 南漳县| 莱西市| 安义县| 扶绥县| 湄潭县| 名山县| 措美县| 特克斯县| 遵义市| 西林县| 上饶市| 长治县| 墨玉县| 潮安县|