找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Web-Age Information Management; 12th International C Haixun Wang,Shijun Li,Tieyun Qian Conference proceedings 2011 The Editor(s) (if applic

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:19:11 | 只看該作者
Getting Critical Categories of a Data Set categories can be treated as a probabilistic data set. In this paper, we devise a novel method to handle this issue. Analysis in theorem and experimental results show the effectiveness and efficiency of the proposed method.
12#
發(fā)表于 2025-3-23 15:40:26 | 只看該作者
QuerySem: Deriving Query Semantics Based on Multiple Ontologiesed by multiple large-scale general-purpose ontologies to derive the semantic aspects of the user’s query. In addition, we utilize statistical-based semantic relatedness measures to compensate for missing background knowledge in the exploited ontologies. Experimental instantiation of the proposed system validates our proposal.
13#
發(fā)表于 2025-3-23 21:09:41 | 只看該作者
MFCluster: Mining Maximal Fault-Tolerant Constant Row Biclusters in Microarray Datasetenerates a weighted undirected relational graph firstly. Then all the maximal fault-tolerant biclusters would be mined by using pattern-growth method in above graph. The experimental results show our algorithm is more efficiently than traditional ones.
14#
發(fā)表于 2025-3-24 01:24:15 | 只看該作者
15#
發(fā)表于 2025-3-24 02:24:45 | 只看該作者
16#
發(fā)表于 2025-3-24 07:13:41 | 只看該作者
MFCluster: Mining Maximal Fault-Tolerant Constant Row Biclusters in Microarray Datasetenerates a weighted undirected relational graph firstly. Then all the maximal fault-tolerant biclusters would be mined by using pattern-growth method in above graph. The experimental results show our algorithm is more efficiently than traditional ones.
17#
發(fā)表于 2025-3-24 11:48:50 | 只看該作者
18#
發(fā)表于 2025-3-24 16:49:33 | 只看該作者
Probabilistic Threshold Join over Distributed Uncertain Dataery with communication efficiency. Furthermore, we provide theoretical analysis of the network cost of our algorithm and demonstrate it by simulation. The experiment results show that our algorithm can save network cost efficiently by comparing to original Bloomjoin algorithm in most scenarios.
19#
發(fā)表于 2025-3-24 21:17:48 | 只看該作者
20#
發(fā)表于 2025-3-25 02:08:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-4 23:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浙江省| 磐石市| 彰武县| 神木县| 延安市| 游戏| 离岛区| 奈曼旗| 德钦县| 扎鲁特旗| 阿勒泰市| 长岛县| 康马县| 安化县| 安乡县| 宁海县| 晋州市| 延长县| 江陵县| 响水县| 合水县| 华容县| 疏勒县| 浦江县| 和政县| 肥城市| 富宁县| 晋州市| 晋中市| 岚皋县| 全椒县| 个旧市| 江山市| 永兴县| 汉源县| 商洛市| 鄂托克旗| 玉田县| 慈溪市| 东丰县| 桦南县|