找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Wireless Geographical Information Systems; 20th International S Mir Abolfazl Mostafavi,Géraldine Del Mondo Conference proceedings 2

[復制鏈接]
樓主: 拼圖游戲
31#
發(fā)表于 2025-3-26 21:22:34 | 只看該作者
Lasith Niroshan,James D. Carswellof the Transvaal, fundamentally altered its attitude towards both the Republic and the territories around it. As Baron Oswald von Richthofen, the Under Secretary of State for Foreign Affairs, succinctly put it: ‘We are letting England have South Africa.’. This statement, an explicit declaration of G
32#
發(fā)表于 2025-3-27 04:47:53 | 只看該作者
33#
發(fā)表于 2025-3-27 07:59:09 | 只看該作者
34#
發(fā)表于 2025-3-27 12:42:03 | 只看該作者
Towards Integration of Spatial Context in Building Energy Demand Assessment Supported by CityGML Enes to represent and manage the required spatiotemporal information for BEMs and feed a knowledgebase that can be used in WSN deployment optimization algorithms. Finally, the paper presents and discusses a case study to highlight the advantages and limitations of the proposed approach.
35#
發(fā)表于 2025-3-27 15:47:08 | 只看該作者
36#
發(fā)表于 2025-3-27 18:11:12 | 只看該作者
37#
發(fā)表于 2025-3-28 02:00:53 | 只看該作者
38#
發(fā)表于 2025-3-28 02:04:50 | 只看該作者
Mobility Data Analytics with?KNOT: The KNime mObility Toolkittform with a collection of new components specifically designed to support processing steps typical of mobility data, including map-matching, trajectory partitioning, and road network coverage analysis. To show the effectiveness of these components, we report also on how we applied them to perform a
39#
發(fā)表于 2025-3-28 07:02:13 | 只看該作者
Bus Journey Time Prediction with?Machine Learning: An Empirical Experience in?Two Citiesons is strongly related to the standard deviation of the whole journey times. It emerges that some bus routes show consistency in the prediction error across methods, and for these routes it makes sense to use methods that are fast and computationally efficient, as there is no benefit to applying mo
40#
發(fā)表于 2025-3-28 13:31:05 | 只看該作者
Geosensor Network Optimisation to?Support Decisions at?Multiple Scalesmation loss within spatially nested decision scales. The methods described in this paper fill an important gap as they are i) suggest appropriate sample and geosensor network designs to support cross-scale monitoring, ii) inform on how current network or geosensor coverage could be enhanced by filli
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 19:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宁武县| 太保市| 黄龙县| 广饶县| 宝应县| 鄂托克前旗| 松阳县| 增城市| 德钦县| 阳曲县| 资阳市| 万盛区| 汨罗市| 邹平县| 宁海县| 山阴县| 泌阳县| 阿瓦提县| 万源市| 泽普县| 延安市| 台山市| 时尚| 白河县| 苍梧县| 金华市| 贺兰县| 平昌县| 淮北市| 彰化县| 望都县| 北安市| 富平县| 枣强县| 四会市| 内丘县| 汤阴县| 瑞丽市| 台北县| 新营市| 巴南区|