找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; Second International Yi Cai,Yoshiharu Ishikawa,Jianliang Xu Conference proceedings 2018 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: 歸納
41#
發(fā)表于 2025-3-28 16:24:41 | 只看該作者
42#
發(fā)表于 2025-3-28 22:20:00 | 只看該作者
Multivariate Time Series Clustering via Multi-relational Community Detection in Networksthe ability of networks to characterize both local and global relationship amongst nodes (representing data samples), while the use of MNMF can give full play to complex relations amongst individual series and preserve the multi-way nature of multivariate information. Preliminary experiment indicates promising results of our proposed approach.
43#
發(fā)表于 2025-3-29 00:05:27 | 只看該作者
Multivariate Time Series Clustering via Multi-relational Community Detection in Networksthe ability of networks to characterize both local and global relationship amongst nodes (representing data samples), while the use of MNMF can give full play to complex relations amongst individual series and preserve the multi-way nature of multivariate information. Preliminary experiment indicates promising results of our proposed approach.
44#
發(fā)表于 2025-3-29 03:42:50 | 只看該作者
Attentive and Collaborative Deep Learning for Recommendationmodel, learning of latent factors of users and items can be facilitated by deep processing of items’ tag information. Furthermore, user preferences learned are interpretable. Experiments conducted on a real world dataset demonstrate that our model can significantly outperform the state-of-the-art deep collaborative filtering models.
45#
發(fā)表于 2025-3-29 10:08:01 | 只看該作者
Attentive and Collaborative Deep Learning for Recommendationmodel, learning of latent factors of users and items can be facilitated by deep processing of items’ tag information. Furthermore, user preferences learned are interpretable. Experiments conducted on a real world dataset demonstrate that our model can significantly outperform the state-of-the-art deep collaborative filtering models.
46#
發(fā)表于 2025-3-29 14:35:18 | 只看該作者
47#
發(fā)表于 2025-3-29 15:55:10 | 只看該作者
Sentiment Classification via Supplementary Information Modeling methods. Results show that our model can not only successfully capture the effect of negation and intensity words, but also achieve significant improvements over state-of-the-art deep neural network baselines without supplementary features.
48#
發(fā)表于 2025-3-29 20:13:40 | 只看該作者
49#
發(fā)表于 2025-3-30 02:03:03 | 只看該作者
Sentiment Classification via Supplementary Information Modeling methods. Results show that our model can not only successfully capture the effect of negation and intensity words, but also achieve significant improvements over state-of-the-art deep neural network baselines without supplementary features.
50#
發(fā)表于 2025-3-30 06:47:51 | 只看該作者
An Estimation Framework of Node Contribution Based on Diffusion Informationmportance of nodes in the spreading processes. Then, we propose an estimation framework and give the method to estimate node contribution based on diffusion samples. Accordingly, the Contribution Estimation algorithm is proposed upon the framework. Finally, we implement our algorithm and test the efficiency on two weighted social networks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白水县| 肇州县| 唐山市| 卢氏县| 甘洛县| 宜良县| 墨竹工卡县| 利津县| 尚志市| 中西区| 固安县| 繁昌县| 平舆县| 子长县| 留坝县| 潼关县| 琼海市| 贡嘎县| 融水| 新邵县| 陇南市| 临江市| 孝感市| 金川县| 新竹市| 和田县| 定兴县| 呼和浩特市| 河北区| 肃宁县| 江孜县| 屯留县| 滦南县| 六枝特区| 囊谦县| 富川| 嵩明县| 双峰县| 日照市| 大冶市| 诸暨市|