找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; 6th International Jo Bohan Li,Lin Yue,Toshiyuki Amagasa Conference proceedings 2023 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
查看: 7295|回復(fù): 74
樓主
發(fā)表于 2025-3-21 19:38:16 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Web and Big Data
副標(biāo)題6th International Jo
編輯Bohan Li,Lin Yue,Toshiyuki Amagasa
視頻videohttp://file.papertrans.cn/1022/1021669/1021669.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Web and Big Data; 6th International Jo Bohan Li,Lin Yue,Toshiyuki Amagasa Conference proceedings 2023 The Editor(s) (if applicable) and The
描述This three-volume set, LNCS 13421, 13422 and 13423, constitutes the thoroughly refereed proceedings of the 6th International Joint Conference, APWeb-WAIM 2022, held in Nanjing, China, in August 2022..The 75 full papers presented together with 45 short papers, and 5 demonstration papers were carefully reviewed and selected from 297 submissions. The papers are organized around the following topics: Big Data Analytic and Management, Advanced database and web applications, Cloud Computing and Crowdsourcing, Data Mining, Graph Data and Social Networks, Information Extraction and Retrieval, Knowledge Graph, Machine Learning, Query processing and optimization, Recommender Systems, Security, privacy, and trust and Blockchain data management and applications, and Spatial and multi-media data..
出版日期Conference proceedings 2023
關(guān)鍵詞artificial intelligence; bandwidth; communication systems; computer hardware; computer networks; computer
版次1
doihttps://doi.org/10.1007/978-3-031-25158-0
isbn_softcover978-3-031-25157-3
isbn_ebook978-3-031-25158-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Web and Big Data影響因子(影響力)




書目名稱Web and Big Data影響因子(影響力)學(xué)科排名




書目名稱Web and Big Data網(wǎng)絡(luò)公開度




書目名稱Web and Big Data網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Web and Big Data被引頻次




書目名稱Web and Big Data被引頻次學(xué)科排名




書目名稱Web and Big Data年度引用




書目名稱Web and Big Data年度引用學(xué)科排名




書目名稱Web and Big Data讀者反饋




書目名稱Web and Big Data讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:56:33 | 只看該作者
A Context Model for?Personal Data Streamsotations, as they can be collected from mobile devices, e.g. smartphones, smartwatches or fitness trackers. The proposed model is validated on a very large dataset about the everyday life of one hundred and fifty-eight people over four weeks, twenty-four hours a day.
板凳
發(fā)表于 2025-3-22 03:40:54 | 只看該作者
978-3-031-25157-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
地板
發(fā)表于 2025-3-22 05:05:26 | 只看該作者
5#
發(fā)表于 2025-3-22 10:29:37 | 只看該作者
6#
發(fā)表于 2025-3-22 16:38:32 | 只看該作者
https://doi.org/10.1007/978-3-031-25158-0artificial intelligence; bandwidth; communication systems; computer hardware; computer networks; computer
7#
發(fā)表于 2025-3-22 17:19:28 | 只看該作者
8#
發(fā)表于 2025-3-23 00:54:22 | 只看該作者
9#
發(fā)表于 2025-3-23 02:09:08 | 只看該作者
MCSketch: An Accurate Sketch for Heavy Flow Detection and Heavy Flow Frequency Estimationer accuracy than existing algorithms for heavy flow detection. Moreover, MCSketch reduces the average relative error by approximately 1 to 3 orders of magnitude in comparison to other state-of-art approaches.
10#
發(fā)表于 2025-3-23 07:03:46 | 只看該作者
MCSketch: An Accurate Sketch for Heavy Flow Detection and Heavy Flow Frequency Estimationer accuracy than existing algorithms for heavy flow detection. Moreover, MCSketch reduces the average relative error by approximately 1 to 3 orders of magnitude in comparison to other state-of-art approaches.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 17:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九江县| 梅州市| 革吉县| 松滋市| 布拖县| 鲁山县| 永济市| 开封县| 旬邑县| 明水县| 庆城县| 双城市| 林口县| 锡林郭勒盟| 北海市| 毕节市| 株洲市| 砚山县| 石屏县| 佳木斯市| 论坛| 丰宁| 汉源县| 定南县| 林口县| 临洮县| 乌拉特中旗| 岳阳市| 论坛| 伊川县| 府谷县| 平潭县| 大渡口区| 卢氏县| 新兴县| 新平| 兴安县| 临桂县| 宾阳县| 石渠县| 灵石县|