找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; 8th International Jo Wenjie Zhang,Anthony Tung,Hongjie Guo Conference proceedings 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: fumble
61#
發(fā)表于 2025-4-1 02:19:25 | 只看該作者
62#
發(fā)表于 2025-4-1 08:56:19 | 只看該作者
Robust Federated Learning with?Realistic Corruptionf the noise is large, while those from benign clients are never filtered throughout the training process. For realistic gradient noise, our approach significantly outperforms existing methods, while the performance under the worst-case attack (i.e. the Byzantine attack) remains nearly the same. Expe
63#
發(fā)表于 2025-4-1 13:27:42 | 只看該作者
64#
發(fā)表于 2025-4-1 15:46:21 | 只看該作者
0302-9743 t Conference on Web and Big Data, APWeb-WAIM 2024, held in Jinhua, China, during August 30–September 1, 2024...The 171 full papers presented in these proceedings were carefully reviewed and selected from 558 submissions...The papers are organized in the following topical sections:.Volume I:?Natural
65#
發(fā)表于 2025-4-1 19:16:33 | 只看該作者
SAM: A Spatial-Aware Learned Index for?Disk-Based Multi-dimensional Searchonsumption. To address these issues, we propose a spatial-aware learned index for disk-based multi-dimensional search (SAM for short). Its core idea is to use a data transformation technique based on dual-distance metric to map more similar data in space into compact regions and the mapped values ar
66#
發(fā)表于 2025-4-1 22:58:34 | 只看該作者
BIVXDB: A Bottom Information Invert Index to?Speed up?the?Query Performance of?LSM-Treerange query process involves filtering and sorting SSTables at each level, resulting in significant performance overhead. To enhance range query performance, we traverse all KV pairs during the SSTable creation phase when compaction, and construct an efficient global index named BIVX with LSM-tree’s
67#
發(fā)表于 2025-4-2 05:48:13 | 只看該作者
SAM: A Spatial-Aware Learned Index for?Disk-Based Multi-dimensional Searchonsumption. To address these issues, we propose a spatial-aware learned index for disk-based multi-dimensional search (SAM for short). Its core idea is to use a data transformation technique based on dual-distance metric to map more similar data in space into compact regions and the mapped values ar
68#
發(fā)表于 2025-4-2 07:06:03 | 只看該作者
Dual-Contrastive Multi-view Clustering Under the Guidance of Global Similarity and Pseudo-labeling studies focus on the selection of contrastive learning method in the feature space, while the selection of positive and negative samples in the contrast process is too arbitrary and often ignores the global relationship among data samples, which may lead to samples from the same clusters having
69#
發(fā)表于 2025-4-2 12:13:17 | 只看該作者
BIVXDB: A Bottom Information Invert Index to?Speed up?the?Query Performance of?LSM-Treerange query process involves filtering and sorting SSTables at each level, resulting in significant performance overhead. To enhance range query performance, we traverse all KV pairs during the SSTable creation phase when compaction, and construct an efficient global index named BIVX with LSM-tree’s
70#
發(fā)表于 2025-4-2 18:09:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 22:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴义市| 高邮市| 渭源县| 肥东县| 黄龙县| 桦南县| 什邡市| 昌乐县| 京山县| 封丘县| 梁山县| 万州区| 阿拉善盟| 广元市| 金乡县| 丰县| 武清区| 金昌市| 灵宝市| 三亚市| 潍坊市| 黄龙县| 桦南县| 重庆市| 揭西县| 高邑县| 鄢陵县| 阿拉尔市| 绿春县| 太仆寺旗| 高密市| 小金县| 繁峙县| 深圳市| 富平县| 伊宁县| 宁武县| 嘉义市| 邢台市| 新巴尔虎左旗| 保康县|