找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; 8th International Jo Wenjie Zhang,Anthony Tung,Hongjie Guo Conference proceedings 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: 稀少
31#
發(fā)表于 2025-3-26 22:14:50 | 只看該作者
Complex Knowledge Base Question Answering via?Structure and?Content Dual-Driven Methodnowledge-based question answering (KBQA) has attracted much attention in the application field of knowledge base. Semantic-parsing-based KBQA methods perform question-answering tasks by executing constructed query graphs on the graph database. However, current semantic-parsing-based KBQA methods sti
32#
發(fā)表于 2025-3-27 05:06:11 | 只看該作者
Complex Knowledge Base Question Answering via?Structure and?Content Dual-Driven Methodnowledge-based question answering (KBQA) has attracted much attention in the application field of knowledge base. Semantic-parsing-based KBQA methods perform question-answering tasks by executing constructed query graphs on the graph database. However, current semantic-parsing-based KBQA methods sti
33#
發(fā)表于 2025-3-27 09:10:47 | 只看該作者
EvoREG: Evolutional Modeling with?Relation-Entity Dual-Guidance for?Temporal Knowledge Graph Reasoniresearch hotspot. Typically, TKG reasoning approaches mainly concentrate on modeling interactions among entities, while the abundant semantic interactions among relations are almost neglected. Besides, TKG reasoning approaches mostly utilize a single graph convolutional network (GCN) to learn repres
34#
發(fā)表于 2025-3-27 12:33:01 | 只看該作者
EvoREG: Evolutional Modeling with?Relation-Entity Dual-Guidance for?Temporal Knowledge Graph Reasoniresearch hotspot. Typically, TKG reasoning approaches mainly concentrate on modeling interactions among entities, while the abundant semantic interactions among relations are almost neglected. Besides, TKG reasoning approaches mostly utilize a single graph convolutional network (GCN) to learn repres
35#
發(fā)表于 2025-3-27 15:54:52 | 只看該作者
Conference proceedings 2024nd Big Data, APWeb-WAIM 2024, held in Jinhua, China, during August 30–September 1, 2024...The 171 full papers presented in these proceedings were carefully reviewed and selected from 558 submissions...The papers are organized in the following topical sections:.Part I:?Natural language processing,?Ge
36#
發(fā)表于 2025-3-27 17:46:41 | 只看該作者
37#
發(fā)表于 2025-3-27 23:22:42 | 只看該作者
Qi Wang,Anbiao Wu,Ye Yuan,Yishu Wang,Guangqing Zhong,Xuefeng Gao,Chenghu Yang
38#
發(fā)表于 2025-3-28 03:40:22 | 只看該作者
39#
發(fā)表于 2025-3-28 07:27:57 | 只看該作者
40#
發(fā)表于 2025-3-28 12:11:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 13:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清丰县| 秦安县| 莒南县| 柞水县| 务川| 准格尔旗| 信宜市| 浦县| 淮安市| 临夏县| 上饶市| 务川| 汾阳市| 金沙县| 吉水县| 武功县| 桃源县| 赤城县| 随州市| 磐石市| 会泽县| 乐陵市| 大竹县| 房山区| 杨浦区| 祁阳县| 武安市| 辽源市| 广宗县| 梅河口市| 涟源市| 文登市| 张家川| 武乡县| 新余市| 漳州市| 利津县| 永修县| 辽源市| 西乌珠穆沁旗| 峨山|