找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; 8th International Jo Wenjie Zhang,Anthony Tung,Hongjie Guo Conference proceedings 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: 稀少
11#
發(fā)表于 2025-3-23 13:12:26 | 只看該作者
12#
發(fā)表于 2025-3-23 15:38:55 | 只看該作者
13#
發(fā)表于 2025-3-23 19:04:30 | 只看該作者
Logic Preference Fusion Reasoning on?Recommendationtract user preferences from interaction records, they frequently neglect the user’s logical requirements, which are embedded in the logical relations between items and entities. Existing methods that account for user’s logical requirements employ neural networks to mimic logical operators, failing t
14#
發(fā)表于 2025-3-24 00:11:24 | 只看該作者
Logic Preference Fusion Reasoning on?Recommendationtract user preferences from interaction records, they frequently neglect the user’s logical requirements, which are embedded in the logical relations between items and entities. Existing methods that account for user’s logical requirements employ neural networks to mimic logical operators, failing t
15#
發(fā)表于 2025-3-24 06:26:48 | 只看該作者
MHGNN: Hybrid Graph Neural Network with?Mixers for?Multi-interest Session-Aware Recommendationevements of existing methods, they still have drawbacks in some aspects. Firstly, most existing methods only consider transition relationships between items within the current user’s sessions, while neglecting the valuable item transition patterns from other users and the useful preferences from sim
16#
發(fā)表于 2025-3-24 07:39:12 | 只看該作者
MHGNN: Hybrid Graph Neural Network with?Mixers for?Multi-interest Session-Aware Recommendationevements of existing methods, they still have drawbacks in some aspects. Firstly, most existing methods only consider transition relationships between items within the current user’s sessions, while neglecting the valuable item transition patterns from other users and the useful preferences from sim
17#
發(fā)表于 2025-3-24 12:51:27 | 只看該作者
18#
發(fā)表于 2025-3-24 15:23:47 | 只看該作者
19#
發(fā)表于 2025-3-24 20:39:48 | 只看該作者
20#
發(fā)表于 2025-3-25 00:04:57 | 只看該作者
Noise-Resistant Graph Neural Networks for?Session-Based Recommendationclick of a user based on a short anonymous interaction sequence. Previous works have focused on users’ long-term and short-term preferences, ignoring the noise problem in session sequences. However, session data is inevitably noisy, as it may contain incorrect clicks that are inconsistent with the u
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 12:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涿鹿县| 宝坻区| 潢川县| 南川市| 民县| 三门县| 奉新县| 集贤县| 大连市| 海安县| 通辽市| 巍山| 眉山市| 海安县| 新丰县| 讷河市| 沙坪坝区| 安阳市| 兴城市| 汨罗市| 闵行区| 金塔县| 杭锦旗| 庆云县| 垦利县| 从化市| 兴业县| 甘孜| 定襄县| 夏津县| 乾安县| 修武县| 巨野县| 南安市| 始兴县| 修武县| 廊坊市| 通榆县| 绥芬河市| 桂阳县| 安徽省|