找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; 8th International Jo Wenjie Zhang,Anthony Tung,Hongjie Guo Conference proceedings 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: dejected
31#
發(fā)表于 2025-3-27 00:52:24 | 只看該作者
Enhancing Continual Relation Extraction with?Concept Aware Dynamic Memory Optimizationing works often rely on storing and replaying a fixed set of typical samples to prevent catastrophic forgetting. However, repeatedly replaying these samples may cause the biased latent features problem. In this paper, we find that the representations of memory samples will gradually lose representat
32#
發(fā)表于 2025-3-27 01:57:53 | 只看該作者
33#
發(fā)表于 2025-3-27 09:21:24 | 只看該作者
Knowledge-Enhanced Context Representation for?Unbiased Scene Graph Generationhips within a given image and to generate a structured representation of the scene. In order to enhance the model’s cognitive understanding of knowledge associations, this paper proposes a Knowledge-Enhanced Context Representation for Unbiased Scene Graph Generation model. To enhance the model, two
34#
發(fā)表于 2025-3-27 09:32:43 | 只看該作者
Knowledge-Enhanced Context Representation for?Unbiased Scene Graph Generationhips within a given image and to generate a structured representation of the scene. In order to enhance the model’s cognitive understanding of knowledge associations, this paper proposes a Knowledge-Enhanced Context Representation for Unbiased Scene Graph Generation model. To enhance the model, two
35#
發(fā)表于 2025-3-27 14:54:58 | 只看該作者
36#
發(fā)表于 2025-3-27 20:33:43 | 只看該作者
Enhancing NER with?Sentence-Level Entity Detection as?an?Simple Auxiliary Task model performance but also represents good generalization over multiple NER datasets. Our experiments on the MSRA and Weibo NER datasets show that our method could effectively boost the existing state-of-the-art NER methods, offering a compelling avenue for the advancement of efficient and robust NER methods.
37#
發(fā)表于 2025-3-28 01:50:53 | 只看該作者
External Knowledge Enhancing Meta-learning Framework for?Few-Shot Text Classification via?Contrastivamples and their class prototypes. Furthermore, this paper employs an adversarial network to enhance the model’s generalization performance. The experiments show that the SCLAWM model has achieved remarkable performance on four benchmark datasets.
38#
發(fā)表于 2025-3-28 04:08:37 | 只看該作者
Enhancing NER with?Sentence-Level Entity Detection as?an?Simple Auxiliary Task model performance but also represents good generalization over multiple NER datasets. Our experiments on the MSRA and Weibo NER datasets show that our method could effectively boost the existing state-of-the-art NER methods, offering a compelling avenue for the advancement of efficient and robust NER methods.
39#
發(fā)表于 2025-3-28 07:52:37 | 只看該作者
External Knowledge Enhancing Meta-learning Framework for?Few-Shot Text Classification via?Contrastivamples and their class prototypes. Furthermore, this paper employs an adversarial network to enhance the model’s generalization performance. The experiments show that the SCLAWM model has achieved remarkable performance on four benchmark datasets.
40#
發(fā)表于 2025-3-28 12:07:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 08:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松阳县| 吐鲁番市| 聊城市| 夏河县| 青州市| 扎兰屯市| 柞水县| 汕尾市| 台北市| 拉萨市| 庆云县| 辽阳市| 临沂市| 大关县| 凤凰县| 屯留县| 无极县| 婺源县| 鹤峰县| 南汇区| 五指山市| 安阳县| 辉南县| 禹城市| 沾化县| 江门市| 荆州市| 都兰县| 藁城市| 克什克腾旗| 昭通市| 丰顺县| 凤阳县| 秭归县| 行唐县| 崇信县| 蓬溪县| 灵石县| 乐东| 尖扎县| 堆龙德庆县|