找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; First International Lei Chen,Christian S. Jensen,Xiang Lian Conference proceedings 2017 Springer International Publishin

[復(fù)制鏈接]
樓主: 生手
51#
發(fā)表于 2025-3-30 08:22:13 | 只看該作者
Boost Clickbait Detection Based on User Behavior Analysis a classifier to produce an initial clickbait-score for articles. Then, we define a loss function on the user behavior and tune the clickbait score toward decreasing the loss function. Experiment shows that we improve precision and recall after using user behavior.
52#
發(fā)表于 2025-3-30 13:55:49 | 只看該作者
Boost Clickbait Detection Based on User Behavior Analysis a classifier to produce an initial clickbait-score for articles. Then, we define a loss function on the user behavior and tune the clickbait score toward decreasing the loss function. Experiment shows that we improve precision and recall after using user behavior.
53#
發(fā)表于 2025-3-30 16:53:47 | 只看該作者
54#
發(fā)表于 2025-3-30 21:01:36 | 只看該作者
55#
發(fā)表于 2025-3-31 03:03:34 | 只看該作者
Improving Topic Diversity in Recommendation Lists: Marginally or Proportionally?modular function maximization and proportionality respectively. Experimental results on MovieLens and FilmTrust datasets demonstrate that our approach outperforms state-of-the-art techniques in terms of distributional diversity.
56#
發(fā)表于 2025-3-31 07:41:31 | 只看該作者
Improving Topic Diversity in Recommendation Lists: Marginally or Proportionally?modular function maximization and proportionality respectively. Experimental results on MovieLens and FilmTrust datasets demonstrate that our approach outperforms state-of-the-art techniques in terms of distributional diversity.
57#
發(fā)表于 2025-3-31 12:22:42 | 只看該作者
58#
發(fā)表于 2025-3-31 14:15:33 | 只看該作者
59#
發(fā)表于 2025-3-31 19:27:25 | 只看該作者
Event2vec: Learning Representations of Events on Temporal SequencesFinally, we feed these data to embedding neural network to get learned vectors. Experiments on real temporal event sequence data in medical area demonstrate the effectiveness and efficiency of the proposed method. The procedure is totally unsupervised without the help of expert knowledge. Thus can b
60#
發(fā)表于 2025-4-1 00:52:53 | 只看該作者
Event2vec: Learning Representations of Events on Temporal SequencesFinally, we feed these data to embedding neural network to get learned vectors. Experiments on real temporal event sequence data in medical area demonstrate the effectiveness and efficiency of the proposed method. The procedure is totally unsupervised without the help of expert knowledge. Thus can b
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赤城县| 兴隆县| 石门县| 崇阳县| 东台市| 五河县| 竹北市| 天峻县| 临朐县| 西贡区| 巴南区| 确山县| 理塘县| 安国市| 双辽市| 博兴县| 雅江县| 白朗县| 昭通市| 汕头市| 潼关县| 旺苍县| 政和县| 铁力市| 隆尧县| 林芝县| 正定县| 岐山县| 社旗县| 五台县| 商丘市| 亚东县| 河北区| 常宁市| 万盛区| 辰溪县| 西城区| 大埔区| 通山县| 荥经县| 肥东县|