找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; First International Lei Chen,Christian S. Jensen,Xiang Lian Conference proceedings 2017 Springer International Publishin

[復(fù)制鏈接]
樓主: 生手
51#
發(fā)表于 2025-3-30 08:22:13 | 只看該作者
Boost Clickbait Detection Based on User Behavior Analysis a classifier to produce an initial clickbait-score for articles. Then, we define a loss function on the user behavior and tune the clickbait score toward decreasing the loss function. Experiment shows that we improve precision and recall after using user behavior.
52#
發(fā)表于 2025-3-30 13:55:49 | 只看該作者
Boost Clickbait Detection Based on User Behavior Analysis a classifier to produce an initial clickbait-score for articles. Then, we define a loss function on the user behavior and tune the clickbait score toward decreasing the loss function. Experiment shows that we improve precision and recall after using user behavior.
53#
發(fā)表于 2025-3-30 16:53:47 | 只看該作者
54#
發(fā)表于 2025-3-30 21:01:36 | 只看該作者
55#
發(fā)表于 2025-3-31 03:03:34 | 只看該作者
Improving Topic Diversity in Recommendation Lists: Marginally or Proportionally?modular function maximization and proportionality respectively. Experimental results on MovieLens and FilmTrust datasets demonstrate that our approach outperforms state-of-the-art techniques in terms of distributional diversity.
56#
發(fā)表于 2025-3-31 07:41:31 | 只看該作者
Improving Topic Diversity in Recommendation Lists: Marginally or Proportionally?modular function maximization and proportionality respectively. Experimental results on MovieLens and FilmTrust datasets demonstrate that our approach outperforms state-of-the-art techniques in terms of distributional diversity.
57#
發(fā)表于 2025-3-31 12:22:42 | 只看該作者
58#
發(fā)表于 2025-3-31 14:15:33 | 只看該作者
59#
發(fā)表于 2025-3-31 19:27:25 | 只看該作者
Event2vec: Learning Representations of Events on Temporal SequencesFinally, we feed these data to embedding neural network to get learned vectors. Experiments on real temporal event sequence data in medical area demonstrate the effectiveness and efficiency of the proposed method. The procedure is totally unsupervised without the help of expert knowledge. Thus can b
60#
發(fā)表于 2025-4-1 00:52:53 | 只看該作者
Event2vec: Learning Representations of Events on Temporal SequencesFinally, we feed these data to embedding neural network to get learned vectors. Experiments on real temporal event sequence data in medical area demonstrate the effectiveness and efficiency of the proposed method. The procedure is totally unsupervised without the help of expert knowledge. Thus can b
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
治多县| 米林县| 金寨县| 怀安县| 宜昌市| 临泉县| 栾城县| 景泰县| 左云县| 灵山县| 开封县| 锡林浩特市| 上犹县| 赞皇县| 益阳市| 大英县| 安徽省| 方城县| 庆安县| 阳西县| 旌德县| 太康县| 雷山县| 平顶山市| 鄂尔多斯市| 南昌市| 元氏县| 图们市| 新密市| 上虞市| 华宁县| 东丰县| 鹤庆县| 武隆县| 天门市| 讷河市| 洱源县| 蒲城县| 宝鸡市| 金秀| 双流县|