找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; 7th International Jo Xiangyu Song,Ruyi Feng,Geyong Min Conference proceedings 2024 The Editor(s) (if applicable) and The

[復制鏈接]
樓主: 爆發(fā)
41#
發(fā)表于 2025-3-28 18:05:28 | 只看該作者
,An Investigation of?the?Effectiveness of?Template Protection Methods on?Protecting Privacy During I detection model. Eventually, during the spoof detection phase, protected templates are used as input, rather than the original iris images. Experiments conducted on CASIA-Syn and CASIA-Interval datasets demonstrate that the application of iris template protection techniques to the spoof detection m
42#
發(fā)表于 2025-3-28 22:12:46 | 只看該作者
,Stock Volatility Prediction Based on?Transformer Model Using Mixed-Frequency Data,s part of the training data. Our experiments show that this model outperforms the baselines in terms of mean square error. The adaption of both types of data under Transformer model significantly reduces the mean square error from 1.00 to 0.86.
43#
發(fā)表于 2025-3-29 01:46:45 | 只看該作者
,An Investigation of?the?Effectiveness of?Template Protection Methods on?Protecting Privacy During I detection model. Eventually, during the spoof detection phase, protected templates are used as input, rather than the original iris images. Experiments conducted on CASIA-Syn and CASIA-Interval datasets demonstrate that the application of iris template protection techniques to the spoof detection m
44#
發(fā)表于 2025-3-29 04:34:00 | 只看該作者
45#
發(fā)表于 2025-3-29 11:10:58 | 只看該作者
,Stock Volatility Prediction Based on?Transformer Model Using Mixed-Frequency Data,s part of the training data. Our experiments show that this model outperforms the baselines in terms of mean square error. The adaption of both types of data under Transformer model significantly reduces the mean square error from 1.00 to 0.86.
46#
發(fā)表于 2025-3-29 14:13:18 | 只看該作者
47#
發(fā)表于 2025-3-29 18:10:54 | 只看該作者
48#
發(fā)表于 2025-3-29 22:04:43 | 只看該作者
49#
發(fā)表于 2025-3-30 03:13:57 | 只看該作者
,A Multi-teacher Knowledge Distillation Framework for?Distantly Supervised Relation Extraction with?rature regulation (FTR) to adjust the temperature assigned to each training instance, so as to dynamically capture local relations between instances. Furthermore, we introduce information entropy of hidden layers to gain stable temperature calculations. Finally, we propose multi-view knowledge disti
50#
發(fā)表于 2025-3-30 04:16:42 | 只看該作者
,PAEE: Parameter-Efficient and?Data-Effective Image Captioning Model with?Knowledge Prompter and?Croed models and similar approaches, while reducing the number of trainable parameters. We design two new datasets to explore the data utilization ability of PAEE and discover that it can effectively use new data and achieve domain transfer without any training or fine-tuning. Additionally, we introduc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
社会| 甘孜| 安溪县| 武陟县| 乐至县| 广西| 五家渠市| 永善县| 上杭县| 顺义区| 九龙县| 汤阴县| 闸北区| 三原县| 奉化市| 舞阳县| 三原县| 紫阳县| 星座| 夏邑县| 巫溪县| 工布江达县| 三门县| 广丰县| 长沙市| 水城县| 肃北| 抚宁县| 铜陵市| 永清县| 五常市| 盖州市| 长治市| 东海县| 嫩江县| 石景山区| 长顺县| 云和县| 岐山县| 洞口县| 南开区|