找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; 7th International Jo Xiangyu Song,Ruyi Feng,Geyong Min Conference proceedings 2024 The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: 爆發(fā)
41#
發(fā)表于 2025-3-28 18:05:28 | 只看該作者
,An Investigation of?the?Effectiveness of?Template Protection Methods on?Protecting Privacy During I detection model. Eventually, during the spoof detection phase, protected templates are used as input, rather than the original iris images. Experiments conducted on CASIA-Syn and CASIA-Interval datasets demonstrate that the application of iris template protection techniques to the spoof detection m
42#
發(fā)表于 2025-3-28 22:12:46 | 只看該作者
,Stock Volatility Prediction Based on?Transformer Model Using Mixed-Frequency Data,s part of the training data. Our experiments show that this model outperforms the baselines in terms of mean square error. The adaption of both types of data under Transformer model significantly reduces the mean square error from 1.00 to 0.86.
43#
發(fā)表于 2025-3-29 01:46:45 | 只看該作者
,An Investigation of?the?Effectiveness of?Template Protection Methods on?Protecting Privacy During I detection model. Eventually, during the spoof detection phase, protected templates are used as input, rather than the original iris images. Experiments conducted on CASIA-Syn and CASIA-Interval datasets demonstrate that the application of iris template protection techniques to the spoof detection m
44#
發(fā)表于 2025-3-29 04:34:00 | 只看該作者
45#
發(fā)表于 2025-3-29 11:10:58 | 只看該作者
,Stock Volatility Prediction Based on?Transformer Model Using Mixed-Frequency Data,s part of the training data. Our experiments show that this model outperforms the baselines in terms of mean square error. The adaption of both types of data under Transformer model significantly reduces the mean square error from 1.00 to 0.86.
46#
發(fā)表于 2025-3-29 14:13:18 | 只看該作者
47#
發(fā)表于 2025-3-29 18:10:54 | 只看該作者
48#
發(fā)表于 2025-3-29 22:04:43 | 只看該作者
49#
發(fā)表于 2025-3-30 03:13:57 | 只看該作者
,A Multi-teacher Knowledge Distillation Framework for?Distantly Supervised Relation Extraction with?rature regulation (FTR) to adjust the temperature assigned to each training instance, so as to dynamically capture local relations between instances. Furthermore, we introduce information entropy of hidden layers to gain stable temperature calculations. Finally, we propose multi-view knowledge disti
50#
發(fā)表于 2025-3-30 04:16:42 | 只看該作者
,PAEE: Parameter-Efficient and?Data-Effective Image Captioning Model with?Knowledge Prompter and?Croed models and similar approaches, while reducing the number of trainable parameters. We design two new datasets to explore the data utilization ability of PAEE and discover that it can effectively use new data and achieve domain transfer without any training or fine-tuning. Additionally, we introduc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻栗坡县| 扎兰屯市| 四子王旗| 庄浪县| 满洲里市| 洛南县| 芦山县| 南乐县| 烟台市| 光山县| 叶城县| 高安市| 中西区| 图木舒克市| 华安县| 拉孜县| 新丰县| 轮台县| 交城县| 慈溪市| 沅陵县| 祁连县| 怀仁县| 桂东县| 三台县| 肃南| 乌拉特中旗| 宾阳县| 天水市| 克什克腾旗| 晋城| 塘沽区| 额尔古纳市| 天长市| 娄底市| 渭南市| 靖远县| 贡嘎县| 谢通门县| 甘肃省| 筠连县|