找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web Technologies and Applications; 18th Asia-Pacific We Feifei Li,Kyuseok Shim,Guanfeng Liu Conference proceedings 2016 Springer Internatio

[復(fù)制鏈接]
樓主: 能干
11#
發(fā)表于 2025-3-23 12:46:01 | 只看該作者
Conference proceedings 2016bmissions...the focus of the conference was on following subjects:?...Spatio-temporal,Textual and Multimedia Data Management..Social Media Data Analysis..Modellingand Learning with Big Data..Streamingand Real-time Data Analysis..Recommendation System..Data Quality and Privacy..QueryOptimization and Scalable Data Processing. .
12#
發(fā)表于 2025-3-23 15:19:00 | 只看該作者
Flexible and Adaptive Stream Join Algorithm model on distributed stream joins and supports arbitrary join predicates. It can handle data skew perfectly since it randomly routes tuples to cells with each steam corresponding to one side of the matrix. Designing of the partitioning scheme of the matrix is a determining factor to maximize system
13#
發(fā)表于 2025-3-23 19:39:38 | 只看該作者
14#
發(fā)表于 2025-3-23 23:24:27 | 只看該作者
15#
發(fā)表于 2025-3-24 04:24:41 | 只看該作者
16#
發(fā)表于 2025-3-24 08:52:31 | 只看該作者
Flexible and Adaptive Stream Join Algorithm model on distributed stream joins and supports arbitrary join predicates. It can handle data skew perfectly since it randomly routes tuples to cells with each steam corresponding to one side of the matrix. Designing of the partitioning scheme of the matrix is a determining factor to maximize system
17#
發(fā)表于 2025-3-24 13:28:00 | 只看該作者
18#
發(fā)表于 2025-3-24 17:43:13 | 只看該作者
19#
發(fā)表于 2025-3-24 22:35:28 | 只看該作者
A Workload-Driven Vertical Partitioning Approach Based on Streaming Frameworkement for large scale OLTP and OLAP applications. Horizontal and vertical database partitioning can improve the performance and manageability for shared-nothing systems which are popular in nowadays. However, the existing partitioning techniques can’t deal with dynamic information efficiently and ca
20#
發(fā)表于 2025-3-25 01:50:31 | 只看該作者
A Target-Dependent Sentiment Analysis Method for Micro-blog Streamsdependent sentiment analysis methods can not get acceptable accuracy. Recently some new sentiment analysis methods using Recursive Neural Networks (RNN) are promissing but they are not target-dependent. In this paper we propose a target-dependent sentiment analysis method for micro-blog streams base
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
社会| 响水县| 大田县| 郑州市| 阳东县| 吴桥县| 抚顺市| 信阳市| 蓬安县| 泽库县| 榆林市| 江永县| 申扎县| 合川市| 凤台县| 叶城县| 屏南县| 湟源县| 旌德县| 辽中县| 雷波县| 迁安市| 蒙山县| 普兰县| 苏尼特左旗| 怀远县| 临沭县| 洛阳市| 泸定县| 兖州市| 云龙县| 汉中市| 武山县| 富民县| 堆龙德庆县| 隆化县| 军事| 册亨县| 常宁市| 崇阳县| 寿光市|