找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web Information Systems and Applications; 20th International C Long Yuan,Shiyu Yang,Xiang Zhao Conference proceedings 2023 The Editor(s) (i

[復制鏈接]
樓主: encroach
41#
發(fā)表于 2025-3-28 18:20:43 | 只看該作者
42#
發(fā)表于 2025-3-28 20:31:24 | 只看該作者
43#
發(fā)表于 2025-3-28 23:44:11 | 只看該作者
X-ray Prohibited Items Recognition Based on Improved YOLOv5 problem of overlapping occlusion of multi-scale contraband. Experimental results in the real X-ray prohibited items dataset demonstrate that our model outperforms state-of-the-art methods in terms of detection accuracy.
44#
發(fā)表于 2025-3-29 04:59:21 | 只看該作者
45#
發(fā)表于 2025-3-29 11:07:48 | 只看該作者
Temporal Convolution and Multi-Attention Jointly Enhanced Electricity Load Forecastingssign different weight values to each timestep. We validate the effectiveness of our method using three real datasets. The results show that our model performs excellent results compared to traditional deep learning models.
46#
發(fā)表于 2025-3-29 13:52:11 | 只看該作者
Temporal Convolution and Multi-Attention Jointly Enhanced Electricity Load Forecastingssign different weight values to each timestep. We validate the effectiveness of our method using three real datasets. The results show that our model performs excellent results compared to traditional deep learning models.
47#
發(fā)表于 2025-3-29 17:55:25 | 只看該作者
Rule-Enhanced Evolutional Dual Graph Convolutional Network for?Temporal Knowledge Graph Link Predictlutional network is employed to capture the structural dependency of relations and the temporal dependency across adjacent snapshots. We conduct experiments on four real-world datasets. The results demonstrate that our model outperforms the baselines, and enhancing information in snapshots is benefi
48#
發(fā)表于 2025-3-29 21:08:22 | 只看該作者
Rule-Enhanced Evolutional Dual Graph Convolutional Network for?Temporal Knowledge Graph Link Predictlutional network is employed to capture the structural dependency of relations and the temporal dependency across adjacent snapshots. We conduct experiments on four real-world datasets. The results demonstrate that our model outperforms the baselines, and enhancing information in snapshots is benefi
49#
發(fā)表于 2025-3-30 03:27:47 | 只看該作者
DINE: Dynamic Information Network Embedding for?Social Recommendation users and items simultaneously and integrate the representations in dynamic and static information networks. In addition, the multi-head self-attention mechanism is employed to model the evolution patterns of dynamic information networks from multiple perspectives. We conduct extensive experiments
50#
發(fā)表于 2025-3-30 05:26:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
逊克县| 通河县| 和平县| 渝北区| 达拉特旗| 河南省| 东台市| 崇仁县| 海丰县| 海晏县| 定陶县| 宁安市| 徐州市| 崇仁县| 西藏| 普洱| 临桂县| 桂林市| 遵化市| 乌鲁木齐县| 桑植县| 宁都县| 右玉县| 驻马店市| 丽水市| 吉木萨尔县| 黄山市| 常州市| 汉寿县| 文昌市| 清河县| 绥棱县| 兰溪市| 金川县| 高邑县| 天津市| 柳林县| 金秀| 泽普县| 新晃| 南涧|