找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Web Information Systems Engineering – WISE 2021; 22nd International C Wenjie Zhang,Lei Zou,Lu Chen Conference proceedings 2021 Springer Nat

[復(fù)制鏈接]
樓主: JAZZ
61#
發(fā)表于 2025-4-1 05:07:05 | 只看該作者
62#
發(fā)表于 2025-4-1 09:32:58 | 只看該作者
Efficient Feature Interactions Learning with Gated Attention Transformerose a novel model named Gated Attention Transformer. In our method, .-order cross features are generated by crossing .-order cross features and .-order features, which uses the vanilla attention mechanism instead of the self-attention mechanism and is more explainable and efficient. In addition, as
63#
發(fā)表于 2025-4-1 13:30:31 | 只看該作者
Exploiting Intra and?Inter-field Feature Interaction with?Self-Attentive Network for?CTR Predictionntion mechanism to aggregate all interactive embeddings. Finally, we assign DNNs in the prediction layer to generate the final output. Extensive experiments on three real public datasets show that IISAN achieves better performance than existing state-of-the-art approaches for CTR prediction.
64#
發(fā)表于 2025-4-1 14:39:42 | 只看該作者
65#
發(fā)表于 2025-4-1 20:21:46 | 只看該作者
66#
發(fā)表于 2025-4-2 01:25:32 | 只看該作者
67#
發(fā)表于 2025-4-2 03:58:14 | 只看該作者
Performance Evaluation of Pre-trained Models in Sarcasm Detection Tasktection task when computing resources are limited. However, XLNet may not be suitable for sarcasm detection task. In addition, we implement detailed grid search for four hyperparameters to investigate their impact on PTMs. The results show that learning rate is the most important hyperparameter. Fur
68#
發(fā)表于 2025-4-2 09:21:40 | 只看該作者
AMBD: Attention Based Multi-Block Deep Learning Model for Warehouse Dwell Time Predictionepresent the loading task statuses of different trucks. On the basis of that, we propose a deep learning based multi-block dwell time prediction model, called .. It incorporates the loading ability of warehouse and the execution process of loading tasks of preceding trucks in the queue. Moreover, to
69#
發(fā)表于 2025-4-2 14:58:23 | 只看該作者
70#
發(fā)表于 2025-4-2 16:31:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
剑阁县| 琼结县| 青铜峡市| 浮梁县| 门头沟区| 罗甸县| 策勒县| 霍城县| 综艺| 娄烦县| 嘉善县| 建平县| 容城县| 双流县| 平湖市| 桐梓县| 辽源市| 常德市| 邵武市| 镇巴县| 城步| 莱阳市| 江孜县| 无为县| 罗定市| 阿尔山市| 安化县| 错那县| 什邡市| 丰宁| 广西| 金秀| 临夏市| 澎湖县| 峡江县| 洛宁县| 贵南县| 加查县| 柳州市| 郎溪县| 张家川|