找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web Information Systems Engineering – WISE 2021; 22nd International C Wenjie Zhang,Lei Zou,Lu Chen Conference proceedings 2021 Springer Nat

[復制鏈接]
樓主: JAZZ
61#
發(fā)表于 2025-4-1 05:07:05 | 只看該作者
62#
發(fā)表于 2025-4-1 09:32:58 | 只看該作者
Efficient Feature Interactions Learning with Gated Attention Transformerose a novel model named Gated Attention Transformer. In our method, .-order cross features are generated by crossing .-order cross features and .-order features, which uses the vanilla attention mechanism instead of the self-attention mechanism and is more explainable and efficient. In addition, as
63#
發(fā)表于 2025-4-1 13:30:31 | 只看該作者
Exploiting Intra and?Inter-field Feature Interaction with?Self-Attentive Network for?CTR Predictionntion mechanism to aggregate all interactive embeddings. Finally, we assign DNNs in the prediction layer to generate the final output. Extensive experiments on three real public datasets show that IISAN achieves better performance than existing state-of-the-art approaches for CTR prediction.
64#
發(fā)表于 2025-4-1 14:39:42 | 只看該作者
65#
發(fā)表于 2025-4-1 20:21:46 | 只看該作者
66#
發(fā)表于 2025-4-2 01:25:32 | 只看該作者
67#
發(fā)表于 2025-4-2 03:58:14 | 只看該作者
Performance Evaluation of Pre-trained Models in Sarcasm Detection Tasktection task when computing resources are limited. However, XLNet may not be suitable for sarcasm detection task. In addition, we implement detailed grid search for four hyperparameters to investigate their impact on PTMs. The results show that learning rate is the most important hyperparameter. Fur
68#
發(fā)表于 2025-4-2 09:21:40 | 只看該作者
AMBD: Attention Based Multi-Block Deep Learning Model for Warehouse Dwell Time Predictionepresent the loading task statuses of different trucks. On the basis of that, we propose a deep learning based multi-block dwell time prediction model, called .. It incorporates the loading ability of warehouse and the execution process of loading tasks of preceding trucks in the queue. Moreover, to
69#
發(fā)表于 2025-4-2 14:58:23 | 只看該作者
70#
發(fā)表于 2025-4-2 16:31:19 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
台北县| 靖边县| 乐亭县| 西峡县| 江阴市| 南涧| 东乡县| 安阳市| 平定县| 大田县| 静海县| 勃利县| 射洪县| 大港区| 胶南市| 茌平县| 雅江县| 花莲县| 阿拉善盟| 麻栗坡县| 永安市| 阿拉善右旗| 通山县| 防城港市| 墨竹工卡县| 巫山县| 松潘县| 石泉县| 松江区| 岱山县| 济阳县| 长子县| 凌海市| 雅江县| 长治县| 获嘉县| 呼伦贝尔市| 淮阳县| 玉树县| 台前县| 贵定县|