找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web Information Systems Engineering – WISE 2021; 22nd International C Wenjie Zhang,Lei Zou,Lu Chen Conference proceedings 2021 Springer Nat

[復制鏈接]
樓主: JAZZ
61#
發(fā)表于 2025-4-1 05:07:05 | 只看該作者
62#
發(fā)表于 2025-4-1 09:32:58 | 只看該作者
Efficient Feature Interactions Learning with Gated Attention Transformerose a novel model named Gated Attention Transformer. In our method, .-order cross features are generated by crossing .-order cross features and .-order features, which uses the vanilla attention mechanism instead of the self-attention mechanism and is more explainable and efficient. In addition, as
63#
發(fā)表于 2025-4-1 13:30:31 | 只看該作者
Exploiting Intra and?Inter-field Feature Interaction with?Self-Attentive Network for?CTR Predictionntion mechanism to aggregate all interactive embeddings. Finally, we assign DNNs in the prediction layer to generate the final output. Extensive experiments on three real public datasets show that IISAN achieves better performance than existing state-of-the-art approaches for CTR prediction.
64#
發(fā)表于 2025-4-1 14:39:42 | 只看該作者
65#
發(fā)表于 2025-4-1 20:21:46 | 只看該作者
66#
發(fā)表于 2025-4-2 01:25:32 | 只看該作者
67#
發(fā)表于 2025-4-2 03:58:14 | 只看該作者
Performance Evaluation of Pre-trained Models in Sarcasm Detection Tasktection task when computing resources are limited. However, XLNet may not be suitable for sarcasm detection task. In addition, we implement detailed grid search for four hyperparameters to investigate their impact on PTMs. The results show that learning rate is the most important hyperparameter. Fur
68#
發(fā)表于 2025-4-2 09:21:40 | 只看該作者
AMBD: Attention Based Multi-Block Deep Learning Model for Warehouse Dwell Time Predictionepresent the loading task statuses of different trucks. On the basis of that, we propose a deep learning based multi-block dwell time prediction model, called .. It incorporates the loading ability of warehouse and the execution process of loading tasks of preceding trucks in the queue. Moreover, to
69#
發(fā)表于 2025-4-2 14:58:23 | 只看該作者
70#
發(fā)表于 2025-4-2 16:31:19 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
梁河县| 天长市| 屏东市| 大关县| 武宣县| 甘德县| 广元市| 深水埗区| 华坪县| 应用必备| 佛教| 招远市| 内江市| 德昌县| 西贡区| 仪征市| 双城市| 文昌市| 汨罗市| 浦北县| 静乐县| 社会| 镇安县| 仁布县| 湟中县| 烟台市| 阳城县| 额敏县| 渝北区| 泗洪县| 额敏县| 夏邑县| 宁海县| 普安县| 安福县| 深泽县| 武定县| 襄城县| 礼泉县| 卓资县| 台北市|