找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web Information Systems Engineering – WISE 2019; 20th International C Reynold Cheng,Nikos Mamoulis,Xin Huang Conference proceedings 2019 Sp

[復(fù)制鏈接]
樓主: 使入伍
41#
發(fā)表于 2025-3-28 15:47:23 | 只看該作者
42#
發(fā)表于 2025-3-28 22:37:42 | 只看該作者
Generating Adversarial Examples by Adversarial Networks for Semi-supervised Learning a classifier that tries to classify the original samples and the adversarial examples consistently. We evaluate our model on several datasets, and the experimental results show that our model outperforms the state-of-the-art methods for semi-supervised learning. The experiments also demonstrate tha
43#
發(fā)表于 2025-3-29 02:49:23 | 只看該作者
Dual Path Convolutional Neural Network for Student Performance Prediction not trivial to construct a good predictive model for some majors with limited student samples. To address the above issues, we develop a novel end-to-end deep learning method and propose Dual Path Convolutional Neural Network (DPCNN) for student performance prediction. Moreover, we introduce multi-
44#
發(fā)表于 2025-3-29 03:35:45 | 只看該作者
45#
發(fā)表于 2025-3-29 08:47:42 | 只看該作者
Personalized Book Recommendation Based on a Deep Learning Model and Metadatahe book recommendation problem using a deep learning model and various metadata that can infer the content and the quality of books without utilizing the actual content. Metadata, which include Library Congress Subject Heading (LCSH), book description, user ratings and reviews, which are widely avai
46#
發(fā)表于 2025-3-29 11:57:02 | 只看該作者
47#
發(fā)表于 2025-3-29 16:35:40 | 只看該作者
48#
發(fā)表于 2025-3-29 20:39:52 | 只看該作者
Co-purchaser Recommendation Based on Network Embeddinguncated bias walk. Our experimental results on real datasets show that the proposed methods, particularly the latter, can effectively complete the co-purchaser recommendation and has a high recommendation performance.
49#
發(fā)表于 2025-3-30 02:00:28 | 只看該作者
50#
發(fā)表于 2025-3-30 05:37:11 | 只看該作者
Memory-Augmented Attention Network for Sequential Recommendationttention network which is stacked on the memory layer. Finally, the mixture of long-term and short-term preference is feeded into the prediction layer to make recommendations. Extensive experiments on four real datasets show that MEANS outperforms various state-of-the-art sequential recommendation m
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 11:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
那曲县| 淳化县| 即墨市| 龙泉市| 北票市| 黄龙县| 西平县| 龙陵县| 达日县| 洪雅县| 黑龙江省| 南宫市| 洪雅县| 墨玉县| 咸宁市| 呼图壁县| 泾川县| 金华市| 平安县| 伊金霍洛旗| 安达市| 邻水| 靖远县| 宁津县| 玛沁县| 大方县| 沙湾县| 长治市| 铁岭县| 郯城县| 临邑县| 长岭县| 上高县| 鹤峰县| 定安县| 镇康县| 剑川县| 莎车县| 洛浦县| 连平县| 来宾市|