找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web Information Systems Engineering – WISE 2019; 20th International C Reynold Cheng,Nikos Mamoulis,Xin Huang Conference proceedings 2019 Sp

[復(fù)制鏈接]
樓主: 使入伍
41#
發(fā)表于 2025-3-28 15:47:23 | 只看該作者
42#
發(fā)表于 2025-3-28 22:37:42 | 只看該作者
Generating Adversarial Examples by Adversarial Networks for Semi-supervised Learning a classifier that tries to classify the original samples and the adversarial examples consistently. We evaluate our model on several datasets, and the experimental results show that our model outperforms the state-of-the-art methods for semi-supervised learning. The experiments also demonstrate tha
43#
發(fā)表于 2025-3-29 02:49:23 | 只看該作者
Dual Path Convolutional Neural Network for Student Performance Prediction not trivial to construct a good predictive model for some majors with limited student samples. To address the above issues, we develop a novel end-to-end deep learning method and propose Dual Path Convolutional Neural Network (DPCNN) for student performance prediction. Moreover, we introduce multi-
44#
發(fā)表于 2025-3-29 03:35:45 | 只看該作者
45#
發(fā)表于 2025-3-29 08:47:42 | 只看該作者
Personalized Book Recommendation Based on a Deep Learning Model and Metadatahe book recommendation problem using a deep learning model and various metadata that can infer the content and the quality of books without utilizing the actual content. Metadata, which include Library Congress Subject Heading (LCSH), book description, user ratings and reviews, which are widely avai
46#
發(fā)表于 2025-3-29 11:57:02 | 只看該作者
47#
發(fā)表于 2025-3-29 16:35:40 | 只看該作者
48#
發(fā)表于 2025-3-29 20:39:52 | 只看該作者
Co-purchaser Recommendation Based on Network Embeddinguncated bias walk. Our experimental results on real datasets show that the proposed methods, particularly the latter, can effectively complete the co-purchaser recommendation and has a high recommendation performance.
49#
發(fā)表于 2025-3-30 02:00:28 | 只看該作者
50#
發(fā)表于 2025-3-30 05:37:11 | 只看該作者
Memory-Augmented Attention Network for Sequential Recommendationttention network which is stacked on the memory layer. Finally, the mixture of long-term and short-term preference is feeded into the prediction layer to make recommendations. Extensive experiments on four real datasets show that MEANS outperforms various state-of-the-art sequential recommendation m
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 11:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天全县| 绥中县| 邵武市| 霍邱县| 中江县| 长宁区| 临朐县| 汝南县| 万宁市| 宽城| 齐齐哈尔市| 廉江市| 襄樊市| 金湖县| 苏州市| 藁城市| 渭源县| 雅安市| SHOW| 措美县| 屏南县| 吴忠市| 灌阳县| 巢湖市| 连南| 永川市| 顺昌县| 渝中区| 天台县| 湛江市| 洛扎县| 正宁县| 沧州市| 汤阴县| 长武县| 石柱| 皋兰县| 和顺县| 湖南省| 汨罗市| 资源县|