找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web Information Systems Engineering – WISE 2018; 19th International C Hakim Hacid,Wojciech Cellary,Rui Zhou Conference proceedings 2018 Spr

[復(fù)制鏈接]
查看: 20195|回復(fù): 74
樓主
發(fā)表于 2025-3-21 17:59:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Web Information Systems Engineering – WISE 2018
副標(biāo)題19th International C
編輯Hakim Hacid,Wojciech Cellary,Rui Zhou
視頻videohttp://file.papertrans.cn/1022/1021532/1021532.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Web Information Systems Engineering – WISE 2018; 19th International C Hakim Hacid,Wojciech Cellary,Rui Zhou Conference proceedings 2018 Spr
描述.The two-volume set LNCS 11233 and LNCS 11234 constitutes the?proceedings of the 19th International Conference on Web Information?Systems Engineering, WISE 2018, held in Dubai, United Arab Emirates, in November 2018..The 48 full papers and 21 short papers presented?were carefully reviewed and selected from 209 submissions. The papers are organized in topical sections on blockchain, security, social network and security, social network, microblog data analysis, graph data, information extraction, text mining, recommender systems, medical data analysis, Web services and cloud computing, data stream and distributed computing, data mining techniques, entity linkage and semantics, Web applications, and data mining applications..
出版日期Conference proceedings 2018
關(guān)鍵詞Artificial intelligence; Big data; Cloud computing; Collaborative filtering; Computer networks; Data comm
版次1
doihttps://doi.org/10.1007/978-3-030-02925-8
isbn_softcover978-3-030-02924-1
isbn_ebook978-3-030-02925-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Web Information Systems Engineering – WISE 2018影響因子(影響力)




書目名稱Web Information Systems Engineering – WISE 2018影響因子(影響力)學(xué)科排名




書目名稱Web Information Systems Engineering – WISE 2018網(wǎng)絡(luò)公開度




書目名稱Web Information Systems Engineering – WISE 2018網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Web Information Systems Engineering – WISE 2018被引頻次




書目名稱Web Information Systems Engineering – WISE 2018被引頻次學(xué)科排名




書目名稱Web Information Systems Engineering – WISE 2018年度引用




書目名稱Web Information Systems Engineering – WISE 2018年度引用學(xué)科排名




書目名稱Web Information Systems Engineering – WISE 2018讀者反饋




書目名稱Web Information Systems Engineering – WISE 2018讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:07:44 | 只看該作者
Integrating Collaborative Filtering and Association Rule Mining for Market Basket Recommendationional association rule recommendation algorithms cannot generate association rules from cold commodity items under big data environment. An implicit semantic model based on historical transaction data of all users is constructed to represent potential features of commodities and measure similarities
板凳
發(fā)表于 2025-3-22 02:08:58 | 只看該作者
Unified User and Item Representation Learning for Joint Recommendation in Social Networkity of user-user matrix and user-item matrix issue create severe challenges, causing collaborative filtering methods to degrade significantly in their recommendation performance. Moreover, the factors those affect users’ preference for items and friends are complex in social networks. For example, u
地板
發(fā)表于 2025-3-22 08:20:38 | 只看該作者
SARFM: A Sentiment-Aware Review Feature Mapping Approach for Cross-Domain Recommendation an effective approach to help improve quality of recommendations and to alleviate the problems of cold-start and data sparsity in recommendation systems. However, existing works on cross-domain algorithm mostly consider ratings, tags and the text information like reviews, and don’t take advantage o
5#
發(fā)表于 2025-3-22 08:59:35 | 只看該作者
Integrating Collaborative Filtering and Association Rule Mining for Market Basket Recommendationional association rule recommendation algorithms cannot generate association rules from cold commodity items under big data environment. An implicit semantic model based on historical transaction data of all users is constructed to represent potential features of commodities and measure similarities
6#
發(fā)表于 2025-3-22 15:30:56 | 只看該作者
Geographical Proximity Boosted Recommendation Algorithms for Real Estates to provide users with their personalized property recommendations to alleviate information overloading. Unlike the recommendation problems in traditional domains, the real estate recommendation has its unique characteristics: users’ preferences are significantly affected by the locations (e.g. sch
7#
發(fā)表于 2025-3-22 17:22:11 | 只看該作者
Unified User and Item Representation Learning for Joint Recommendation in Social Networkity of user-user matrix and user-item matrix issue create severe challenges, causing collaborative filtering methods to degrade significantly in their recommendation performance. Moreover, the factors those affect users’ preference for items and friends are complex in social networks. For example, u
8#
發(fā)表于 2025-3-22 22:24:42 | 只看該作者
Cross-domain Recommendation with Consistent Knowledge Transfer by Subspace Alignmenton methods is data sparsity, due to the limited number of observed user interaction with the products/services. Cross-domain recommender systems are developed to tackle this problem through transferring knowledge from a source domain with relatively abundant data to the target domain with scarce dat
9#
發(fā)表于 2025-3-23 02:26:23 | 只看該作者
Geographical Proximity Boosted Recommendation Algorithms for Real Estates to provide users with their personalized property recommendations to alleviate information overloading. Unlike the recommendation problems in traditional domains, the real estate recommendation has its unique characteristics: users’ preferences are significantly affected by the locations (e.g. sch
10#
發(fā)表于 2025-3-23 06:52:21 | 只看該作者
Cross-domain Recommendation with Consistent Knowledge Transfer by Subspace Alignmenton methods is data sparsity, due to the limited number of observed user interaction with the products/services. Cross-domain recommender systems are developed to tackle this problem through transferring knowledge from a source domain with relatively abundant data to the target domain with scarce dat
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德庆县| 南川市| 盐城市| 罗源县| 枣庄市| 玉田县| 安远县| 张家界市| 商都县| 正定县| 沅陵县| 都安| 海兴县| 屏东县| 页游| 奉新县| 五家渠市| 仁寿县| 丰顺县| 镶黄旗| 盐边县| 杨浦区| 饶阳县| 肇庆市| 沁源县| 马龙县| 定远县| 西乌珠穆沁旗| 会东县| 赤城县| 修水县| 鹿泉市| 兰坪| 朝阳县| 深圳市| 遂溪县| 会东县| 海淀区| 玉田县| 沙雅县| 喀喇沁旗|