找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Web Information Systems Engineering -- WISE 2013; 14th International C Xuemin Lin,Yannis Manolopoulos,Guangyan Huang Conference proceedings

[復(fù)制鏈接]
樓主: ARGOT
31#
發(fā)表于 2025-3-26 21:23:21 | 只看該作者
32#
發(fā)表于 2025-3-27 04:54:16 | 只看該作者
33#
發(fā)表于 2025-3-27 08:40:29 | 只看該作者
Exploiting User Queries for Search Result Clustering the user, the different cluster should contain the results corresponding to different possible meanings of the user query and the cluster labels should reflect these meanings. However, existing SRC algorithms often ignore the user query and group the results based just on the similarity of search r
34#
發(fā)表于 2025-3-27 12:09:24 | 只看該作者
Exploiting User Queries for Search Result Clustering the user, the different cluster should contain the results corresponding to different possible meanings of the user query and the cluster labels should reflect these meanings. However, existing SRC algorithms often ignore the user query and group the results based just on the similarity of search r
35#
發(fā)表于 2025-3-27 14:56:53 | 只看該作者
36#
發(fā)表于 2025-3-27 21:34:02 | 只看該作者
Towards Context-Aware Social Recommendation via Trust Networkstion models cannot well handle the heterogeneity and diversity of the social relationships (e.g., different friends may have different recommendations on the same items in different situations). Furthermore, few models take into account (non-social) contextual information, which has been proved to b
37#
發(fā)表于 2025-3-28 01:07:31 | 只看該作者
Personalized Recommendation on Multi-Layer Context Graphecommender systems, but most existing approaches only focus on user and item dimensions and neglect any additional contextual information, such as time and location. In this paper, we propose a Multi-Layer Context Graph (MLCG) model which incorporates a variety of contextual information into a recom
38#
發(fā)表于 2025-3-28 02:17:14 | 只看該作者
39#
發(fā)表于 2025-3-28 08:23:08 | 只看該作者
Recommending Tripleset Interlinking through a Social Network Approachipleset is a non-trivial task in the publishing process. Without prior knowledge about the entire Web of Data, a data publisher must perform an exploratory search, which demands substantial effort and may become impracticable, with the growth and dissemination of Linked Data. Aiming at alleviating t
40#
發(fā)表于 2025-3-28 12:46:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铜梁县| 永福县| 秭归县| 佛教| 江都市| 永仁县| 东山县| 长泰县| 南汇区| 阳春市| 民勤县| 汝州市| 阳曲县| 疏附县| 洛浦县| 成安县| 富裕县| 乌鲁木齐县| 马公市| 奈曼旗| 来宾市| 正阳县| 玉山县| 仙游县| 南川市| 平昌县| 商都县| 巫山县| 碌曲县| 龙江县| 莱芜市| 江川县| 博乐市| 板桥市| 宁夏| 元谋县| 吉木萨尔县| 房产| 东阳市| 同江市| 卢龙县|