找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Weaving Services and People on the World Wide Web; Irwin King,Ricardo Baeza-Yates Book 2009 Springer-Verlag Berlin Heidelberg 2009 Access.

[復(fù)制鏈接]
樓主: Grant
51#
發(fā)表于 2025-3-30 08:49:19 | 只看該作者
Acquisition of Vernacular Place Names from Web Sourcesat various web sources containing user created geographic information and business data can be used to represent neighbourhoods in Cardiff, UK. The resulting representations can differ in their spatial extent from administrative definitions. The chapter closes with an outlook on future research questions.
52#
發(fā)表于 2025-3-30 14:30:45 | 只看該作者
Acquisition of Vernacular Place Names from Web Sourcesat various web sources containing user created geographic information and business data can be used to represent neighbourhoods in Cardiff, UK. The resulting representations can differ in their spatial extent from administrative definitions. The chapter closes with an outlook on future research questions.
53#
發(fā)表于 2025-3-30 18:40:24 | 只看該作者
On the Effect of Group Structures on Ranking Strategies in Folksonomieshe grouping of resources (one-tailed t-Test, level of significance α=0.05). Furthermore, tag recommendations profit from the group context, and it is possible to make very good recommendations even for untagged resources– which currently known tag recommendation algorithms cannot fulfill.
54#
發(fā)表于 2025-3-30 21:55:10 | 只看該作者
55#
發(fā)表于 2025-3-31 01:40:15 | 只看該作者
56#
發(fā)表于 2025-3-31 06:12:31 | 只看該作者
Resolving Person Names in Web People Search empirically evaluated in this context. On the SemEval 2007 Web People Search it is shown that the person cluster hypothesis holds reasonably well and that the Single Pass Clustering and Agglomerative Clustering methods provide the best performance.
57#
發(fā)表于 2025-3-31 12:48:51 | 只看該作者
58#
發(fā)表于 2025-3-31 13:47:56 | 只看該作者
59#
發(fā)表于 2025-3-31 20:20:32 | 只看該作者
Semantic Services for Wikipediactive characteristics, like entity-based link graph, abundant categorization and semi-structured layout, and can serve as an ideal data source to extract high quality and well-structured data. In this chapter, we first propose several solutions to extract knowledge from Wikipedia. We do not only con
60#
發(fā)表于 2025-4-1 00:49:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 22:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金塔县| 石屏县| 宽甸| 青州市| 休宁县| 界首市| 梓潼县| 田东县| 阿图什市| 阿瓦提县| 德安县| 曲松县| 万荣县| 阿瓦提县| 洞头县| 沧州市| 东辽县| 屏东市| 福泉市| 江安县| 临邑县| 大城县| 五华县| 丰镇市| 临沭县| 称多县| 咸丰县| 普兰县| 宁化县| 红河县| 乳源| 奉新县| 彭山县| 三江| 延边| 杂多县| 山阴县| 建阳市| 遂昌县| 秭归县| 翁源县|