找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelets, Approximation, and Statistical Applications; Wolfgang H?rdle,Gerard Kerkyacharian,Alexander Tsy Book 1998 Springer-Verlag New Yo

[復(fù)制鏈接]
樓主: Hermit
31#
發(fā)表于 2025-3-26 22:15:18 | 只看該作者
32#
發(fā)表于 2025-3-27 03:09:56 | 只看該作者
33#
發(fā)表于 2025-3-27 05:40:35 | 只看該作者
Wavelets and Besov Spaces,ch more general tool in describing the smoothness properties of functions. We show that Besov spaces admit a characterization in terms of wavelet coefficients, which is not the case for Sobolev spaces. Thus the Besov spaces are intrinsically connected to the analysis of curves via wavelet techniques
34#
發(fā)表于 2025-3-27 12:24:57 | 只看該作者
35#
發(fā)表于 2025-3-27 14:36:00 | 只看該作者
36#
發(fā)表于 2025-3-27 19:46:20 | 只看該作者
Wavelet thresholding and adaptation,d generalizations of soft and hard thresholding. Then we develop the notion of adaptive estimators and present the results about adaptivity of wavelet thresholding for density estimation problems. Finally, we consider the data-driven methods of selecting the wavelet basis, the threshold value and th
37#
發(fā)表于 2025-3-27 23:49:29 | 只看該作者
38#
發(fā)表于 2025-3-28 03:51:35 | 只看該作者
39#
發(fā)表于 2025-3-28 06:34:13 | 只看該作者
Wavelets and Approximation,v spaces and show that it has an intrinsic relation to wavelet expansions. The presentation in this chapter and in Chapter 9 is more formal than in the previous ones. It is designed for the mathematically oriented reader who is interested in a deeper theoretical insight into the properties of wavelet bases.
40#
發(fā)表于 2025-3-28 12:56:19 | 只看該作者
Wavelets and Approximation,v spaces and show that it has an intrinsic relation to wavelet expansions. The presentation in this chapter and in Chapter 9 is more formal than in the previous ones. It is designed for the mathematically oriented reader who is interested in a deeper theoretical insight into the properties of wavelet bases.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凌云县| 大悟县| 瑞丽市| 扎赉特旗| 邛崃市| 潮州市| 石景山区| 金寨县| 汕尾市| 龙州县| 舞钢市| 溧阳市| 高雄县| 金沙县| 东海县| 高雄市| 广元市| 金乡县| 嘉定区| 晴隆县| 古丈县| 曲阳县| 皮山县| 惠安县| 台湾省| 永济市| 泸州市| 阜宁县| 荃湾区| 光泽县| 汝南县| 裕民县| 亳州市| 仙游县| 晋宁县| 阿鲁科尔沁旗| 蚌埠市| 喀什市| 沽源县| 当阳市| 云林县|