找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelets and Statistics; Anestis Antoniadis,Georges Oppenheim Book 1995 Springer-Verlag New York 1995 Gaussian process.Hypothese.Markov ra

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 15:25:18 | 只看該作者
42#
發(fā)表于 2025-3-28 22:27:56 | 只看該作者
43#
發(fā)表于 2025-3-29 01:29:35 | 只看該作者
Locally Self Similar Gaussian Processes,of medical images. In this lecture, we first describe the class of Self Similar Gaussian Processes (SSGP) and give (in one dimension) a multiresolution analysis of the Fractional Brownian Motion of index.(.). We then enlarge the SSGP setting to the elliptic gaussian processes setting.
44#
發(fā)表于 2025-3-29 06:13:33 | 只看該作者
WaveLab and Reproducible Research,sions are provided for Macintosh, UNIX and Windows machines... makes available, in one package, all the code to reproduce all the figures in our published wavelet articles. The interested reader can inspect the source code to see exactly what algorithms were used, how parameters were set in producin
45#
發(fā)表于 2025-3-29 09:43:53 | 只看該作者
46#
發(fā)表于 2025-3-29 14:39:06 | 只看該作者
47#
發(fā)表于 2025-3-29 17:00:49 | 只看該作者
Extrema Reconstructions and Spline Smoothing: Variations on an Algorithm of Mallat & Zhong, These authors construct an approximation of the wavelet transform of the signal via an alternate projection iteration procedure and they obtain an approximation of the original signal by inverting the approximate wavelet transform. We explain how to solve the same problem by directly constructing t
48#
發(fā)表于 2025-3-29 22:03:07 | 只看該作者
Identification of Chirps with Continuous Wavelet Transform,resentations such as wavelet representations are well adapted to the characterization problem of such chirps. Ridges in the modulus of the transform determine regions in the transform domain with a high concentration of energy, and are regarded as natural candidates for the characterization and the
49#
發(fā)表于 2025-3-30 02:14:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:32:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台南县| 平邑县| 福贡县| 抚远县| 宁安市| 繁昌县| 凤城市| 牡丹江市| 天全县| 无为县| 淮北市| 依安县| 连江县| 苗栗县| 桦甸市| 临猗县| 乡宁县| 出国| 仁布县| 思南县| 霍山县| 墨竹工卡县| 深圳市| 额尔古纳市| 加查县| 大安市| 瑞丽市| 荃湾区| 嘉祥县| 鸡西市| 修武县| 揭东县| 井研县| 子洲县| 邳州市| 昭平县| 茌平县| 长沙县| 北流市| 兰考县| 平顶山市|