找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelets and Singular Integrals on Curves and Surfaces; Guy David Book 1991 Springer-Verlag Berlin Heidelberg 1991 Funktionenraum.Singular

[復(fù)制鏈接]
查看: 29482|回復(fù): 34
樓主
發(fā)表于 2025-3-21 18:26:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Wavelets and Singular Integrals on Curves and Surfaces
編輯Guy David
視頻videohttp://file.papertrans.cn/1022/1021281/1021281.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Wavelets and Singular Integrals on Curves and Surfaces;  Guy David Book 1991 Springer-Verlag Berlin Heidelberg 1991 Funktionenraum.Singular
描述Wavelets are a recently developed tool for the analysis and synthesis of functions; their simplicity, versatility and precision makes them valuable in many branches of applied mathematics. The book begins with an introduction to the theory of wavelets and limits itself to the detailed construction of various orthonormal bases of wavelets. A second part centers on a criterion for the L2-boundedness of singular integral operators: the T(b)-theorem. It contains a full proof of that theorem. It contains a full proof of that theorem, and a few of the most striking applications (mostly to the Cauchy integral). The third part is a survey of recent attempts to understand the geometry of subsets of Rn on which analogues of the Cauchy kernel define bounded operators. The book was conceived for a graduate student, or researcher, with a primary interest in analysis (and preferably some knowledge of harmonic analysis and seeking an understanding of some of the new "real-variable methods" used in harmonic analysis.
出版日期Book 1991
關(guān)鍵詞Funktionenraum; Singular integral; calderon-zygmund operators; harmonic analysis; partielle Differential
版次1
doihttps://doi.org/10.1007/BFb0091544
isbn_softcover978-3-540-53902-5
isbn_ebook978-3-540-46377-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1991
The information of publication is updating

書目名稱Wavelets and Singular Integrals on Curves and Surfaces影響因子(影響力)




書目名稱Wavelets and Singular Integrals on Curves and Surfaces影響因子(影響力)學(xué)科排名




書目名稱Wavelets and Singular Integrals on Curves and Surfaces網(wǎng)絡(luò)公開(kāi)度




書目名稱Wavelets and Singular Integrals on Curves and Surfaces網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Wavelets and Singular Integrals on Curves and Surfaces被引頻次




書目名稱Wavelets and Singular Integrals on Curves and Surfaces被引頻次學(xué)科排名




書目名稱Wavelets and Singular Integrals on Curves and Surfaces年度引用




書目名稱Wavelets and Singular Integrals on Curves and Surfaces年度引用學(xué)科排名




書目名稱Wavelets and Singular Integrals on Curves and Surfaces讀者反饋




書目名稱Wavelets and Singular Integrals on Curves and Surfaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:10:58 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:00:55 | 只看該作者
978-3-540-53902-5Springer-Verlag Berlin Heidelberg 1991
地板
發(fā)表于 2025-3-22 05:58:02 | 只看該作者
Wavelets and Singular Integrals on Curves and Surfaces978-3-540-46377-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
5#
發(fā)表于 2025-3-22 11:52:17 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/w/image/1021281.jpg
6#
發(fā)表于 2025-3-22 15:11:13 | 只看該作者
https://doi.org/10.1007/BFb0091544Funktionenraum; Singular integral; calderon-zygmund operators; harmonic analysis; partielle Differential
7#
發(fā)表于 2025-3-22 20:53:11 | 只看該作者
8#
發(fā)表于 2025-3-22 23:46:06 | 只看該作者
9#
發(fā)表于 2025-3-23 02:51:10 | 只看該作者
10#
發(fā)表于 2025-3-23 06:19:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海兴县| 华宁县| 新和县| 晋中市| 耿马| 涿鹿县| 托克托县| 友谊县| 墨竹工卡县| 武川县| 汪清县| 安康市| 香港 | 舞钢市| 霸州市| 新丰县| 蕲春县| 黄浦区| 永胜县| 芜湖市| 如皋市| 凭祥市| 拜泉县| 海口市| 肃宁县| 沧州市| 固始县| 柯坪县| 孟连| 英超| 西乌珠穆沁旗| 平定县| 丹寨县| 金坛市| 思南县| 藁城市| 佳木斯市| 巴南区| 韩城市| 迭部县| 彭泽县|