找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelet Transforms and Their Applications; Lokenath Debnath,Firdous Ahmad Shah Textbook 2015Latest edition Springer Science+Business Media

[復(fù)制鏈接]
樓主: obdurate
21#
發(fā)表于 2025-3-25 07:19:49 | 只看該作者
Includes carefully chosen end-of-chapter exercises directly associated with applications or formulated in terms of the mathematical, physical, and engineering context and provides answers to selected exercises 978-0-8176-8418-1
22#
發(fā)表于 2025-3-25 10:54:31 | 只看該作者
http://image.papertrans.cn/w/image/1021265.jpg
23#
發(fā)表于 2025-3-25 12:38:55 | 只看該作者
https://doi.org/10.1007/978-0-8176-8418-1Fourier Transforms; Harmonic Wavelets; Multiresolution Analysis; Time-Frequency Analsysis; Wavelets
24#
發(fā)表于 2025-3-25 18:47:30 | 只看該作者
Springer Science+Business Media New York 2015
25#
發(fā)表于 2025-3-25 20:25:52 | 只看該作者
26#
發(fā)表于 2025-3-26 01:16:11 | 只看該作者
The Wavelet Transforms and Their Basic Properties,ain difficulties of the Gabor wavelets in the sense that the Gabor analyzing function ..(τ)?=?.(τ ? .)?.. oscillates more rapidly as the frequency ω tends to infinity. This leads to significant numerical instability in the computation of the coefficients 〈.,?..〉.
27#
發(fā)表于 2025-3-26 06:45:17 | 只看該作者
Wavelet Transform Analysis of Turbulence, computation. More and more evidence has been accumulated for the physical description of turbulent motions in both two and three dimensions. Consequently, turbulence is now characterized by a remarkable degree of order even though turbulence is usually defined as disordered fluid flows.
28#
發(fā)表于 2025-3-26 11:36:37 | 只看該作者
Wavelet Transform Analysis of Turbulence, computation. More and more evidence has been accumulated for the physical description of turbulent motions in both two and three dimensions. Consequently, turbulence is now characterized by a remarkable degree of order even though turbulence is usually defined as disordered fluid flows.
29#
發(fā)表于 2025-3-26 16:24:37 | 只看該作者
Brief Historical Introduction,Historically, Joseph Fourier (1770–1830) first introduced the remarkable idea of expansion of a function in terms of trigonometric series without giving any attention to rigorous mathematical analysis.
30#
發(fā)表于 2025-3-26 18:17:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌拉特前旗| 呼图壁县| 枣阳市| 滨海县| 安龙县| 宁武县| 南通市| 增城市| 东安县| 上饶县| 泗洪县| 和龙市| 汤原县| 西盟| 神农架林区| 子洲县| 友谊县| 东乌珠穆沁旗| 遂平县| 通化市| 西充县| 怀柔区| 资溪县| 渭源县| 海丰县| 商南县| 新巴尔虎右旗| 礼泉县| 双鸭山市| 天门市| 尼勒克县| 大名县| 体育| 枣强县| 兴城市| 介休市| 镇沅| 阿勒泰市| 龙里县| 兰溪市| 天峻县|