找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelet Transforms and Their Applications; Lokenath Debnath Textbook 20021st edition Springer Science+Business Media New York 2002 Fourier

[復(fù)制鏈接]
樓主: Coenzyme
31#
發(fā)表于 2025-3-26 22:16:24 | 只看該作者
32#
發(fā)表于 2025-3-27 03:28:27 | 只看該作者
33#
發(fā)表于 2025-3-27 09:01:29 | 只看該作者
The Wavelet Transform and Its Basic Properties,y at low frequencies. These difficulties led to a problem of finding a suitable reconstruction formula. In order to resolve these difficulties, Morlet first made an attempt to use analytic signals .(.) = .(.) exp{.(.)} and then introduced the wavelet . defined by its Fourier transform
34#
發(fā)表于 2025-3-27 11:12:10 | 只看該作者
35#
發(fā)表于 2025-3-27 17:17:57 | 只看該作者
36#
發(fā)表于 2025-3-27 21:22:16 | 只看該作者
Fourier Transforms and Their Applications,ry differential equations, partial differential equations, and integral equations are discussed. Included are some examples of applications of multiple Fourier transforms to important partial differential equations and Green’s functions.
37#
發(fā)表于 2025-3-28 00:07:05 | 只看該作者
38#
發(fā)表于 2025-3-28 04:59:13 | 只看該作者
,Newland’s Harmonic Wavelets,ts Fourier transform .(.) is zero except for an octave band of frequencies. Furthermore, he generalized the concept of the harmonic wavelet to describe a family of mixed wavelets with the simple mathematical structure. It is also shown that this family provides a complete set of orthonormal basis functions for signal analysis.
39#
發(fā)表于 2025-3-28 07:18:19 | 只看該作者
,Newland’s Harmonic Wavelets,ts Fourier transform .(.) is zero except for an octave band of frequencies. Furthermore, he generalized the concept of the harmonic wavelet to describe a family of mixed wavelets with the simple mathematical structure. It is also shown that this family provides a complete set of orthonormal basis functions for signal analysis.
40#
發(fā)表于 2025-3-28 13:50:19 | 只看該作者
on, and sampling theory. One of the main reasons for the discovery of wavelets and wavelet transforms is that the Fourier transform analysis does not contain the local information of signals. So the Fourier transform cannot be used for analyzing signals in a joint time and frequency domain. In 1982,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 23:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江永县| 措美县| 平泉县| 巴青县| 马龙县| 忻城县| 德保县| 大悟县| 龙门县| 南靖县| 钦州市| 河南省| 安庆市| 秦皇岛市| 广德县| 濉溪县| 荔波县| 南岸区| 桂平市| 延安市| 苍梧县| 轮台县| 佛冈县| 明光市| 什邡市| 平凉市| 长汀县| 甘谷县| 霍州市| 乌兰察布市| 彭水| 武安市| 利辛县| 保康县| 华宁县| 凯里市| 天等县| 兰溪市| 吉水县| 环江| 萨嘎县|