找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Wave Phenomena; Mathematical Analysi Willy D?rfler,Marlis Hochbruck,Christian Wieners Textbook 2023 The Editor(s) (if applicable) and The A

[復(fù)制鏈接]
樓主: Waterproof
41#
發(fā)表于 2025-3-28 18:01:56 | 只看該作者
42#
發(fā)表于 2025-3-28 22:12:26 | 只看該作者
Willy D?rfler,Marlis Hochbruck,Jonas K?hler,Andreas Rieder,Roland Schnaubelt,Christian Wieners
43#
發(fā)表于 2025-3-29 01:24:59 | 只看該作者
Space-Time Solutions for Linear Hyperbolic SystemsThe linear wave equation can be analyzed in the framework of symmetric Friedrichs systems as a special case of linear hyperbolic conservation laws. Here, we introduce a general framework for the existence and uniqueness of strong and weak solutions in space and time which applies to general linear wave equations.
44#
發(fā)表于 2025-3-29 03:23:27 | 只看該作者
Introduction and Local Wellposedness on ,In this section we develop a local wellposedness theory for the quasilinear Maxwell equations on .. Our approach is based on energy methods and a fixed-point argument, which make use of the linear system with time-depending coefficients.
45#
發(fā)表于 2025-3-29 10:00:47 | 只看該作者
Local Wellposedness on a DomainIn this chapter we extend the results from the previous one to linear and quasilinear Maxwell systems on a spatial domain ., endowed with boundary conditions. The general theory of symmetric hyperbolic systems is much more sophisticated in this case.
46#
發(fā)表于 2025-3-29 11:54:01 | 只看該作者
Exponential Decay Caused by ConductivityIn this chapter we use the wellposedness Theorem . to show global existence and exponential decay to 0 for small initial data in the presence of a strictly positive conductivity ..
47#
發(fā)表于 2025-3-29 16:22:28 | 只看該作者
IntroductionSolving wave-type equations numerically requires their discretization either in space and time separately or in space-time. In these lecture notes, we follow a methods-of-lines approach, where we first discretize the problem in space and then in time. For the space discretization, we consider a discontinuous Galerkin finite element method.
48#
發(fā)表于 2025-3-29 21:09:42 | 只看該作者
Linear Wave-Type EquationsIn this chapter, we state and analyze the wave-type problem, which we consider within these lecture notes. As mentioned before, we state this problem in a rather general setting, namely in terms of Friedrichs’ operators.
49#
發(fā)表于 2025-3-30 00:18:00 | 只看該作者
50#
發(fā)表于 2025-3-30 06:23:26 | 只看該作者
Space-Time Solutions for Linear Hyperbolic SystemsThe linear wave equation can be analyzed in the framework of symmetric Friedrichs systems as a special case of linear hyperbolic conservation laws. Here, we introduce a general framework for the existence and uniqueness of strong and weak solutions in space and time which applies to general linear wave equations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台山市| 北辰区| 屏山县| 兴海县| 临潭县| 达孜县| 桑植县| 小金县| 屏东市| 莫力| 长治市| 台州市| 汝城县| 霍林郭勒市| 昌黎县| 墨玉县| 新津县| 上林县| 长丰县| 巨鹿县| 洛南县| 普兰县| 鹰潭市| 杭锦后旗| 禄劝| 四会市| 车致| 昭通市| 阳信县| 河曲县| 米脂县| 沭阳县| 贵定县| 宁夏| 轮台县| 鄂托克前旗| 安阳县| 华容县| 剑河县| 安顺市| 福海县|