找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Wave Factorization of Elliptic Symbols: Theory and Applications; Introduction to the Vladimir B. Vasil’ev Book 2000 Springer Science+Busin

[復(fù)制鏈接]
樓主: obsess
31#
發(fā)表于 2025-3-26 23:58:23 | 只看該作者
32#
發(fā)表于 2025-3-27 03:23:28 | 只看該作者
Distributions and Their Fourier transforms, . ∈ .(?.) iff ∥.. ? .∥ . → 0, . → ∞ for all . = 0, 1, ... The last statement, by virtue of (1.1.1) is equivalent to saying that ......(.) uniformly tends to zero under . → ∞ for arbitrary multiindex ..
33#
發(fā)表于 2025-3-27 05:59:28 | 只看該作者
The problem of indentation of a wedge-shaped punch,rs is devoted to the study of special types of such equations [106,178] when a punch has fixed form (for example, the punch is circular, elliptical, or wedge-shaped, etc.), and in these papers they develop asymptotic methods of solution.
34#
發(fā)表于 2025-3-27 10:39:41 | 只看該作者
35#
發(fā)表于 2025-3-27 14:06:24 | 只看該作者
36#
發(fā)表于 2025-3-27 18:45:56 | 只看該作者
The Laplacian in a plane infinite angle,f the posed problem exists and is unique (including explicit construction for solution in terms of Fourier and Mellin transforms). Other approaches one can find in papers which are contained in the list of references from [135].
37#
發(fā)表于 2025-3-28 00:02:33 | 只看該作者
Diffraction on a quadrant,dimensional generalization of this method, and with its help we will study pseudodifferential equations arising from a diffraction problem on a quadrant, obtained in [168]. The solution in the simplest case of this problem can be written in explicit form and is more appealing than the formula found in [168].
38#
發(fā)表于 2025-3-28 04:42:10 | 只看該作者
39#
發(fā)表于 2025-3-28 09:08:43 | 只看該作者
. The elements of such a theory already exist in the literature and can be found in such papers and monographs as [90,95,96,109,115,131,132,134,135,136,146, 163,165,169,170,182,184,214-218]. In this book, we will employ a theory that is based on quite different principles than those used previously.
40#
發(fā)表于 2025-3-28 13:06:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大同县| 邢台市| 英超| 海门市| 绥化市| 南充市| 滨州市| 浙江省| 东乌| 东台市| 汾阳市| 北京市| 昌宁县| 连山| 应城市| 洛隆县| 临城县| 乌兰察布市| 嘉鱼县| 巫溪县| 澜沧| 沽源县| 丹东市| 磴口县| 宜丰县| 怀化市| 澄江县| 洛川县| 临夏县| 黄大仙区| 江源县| 洮南市| 类乌齐县| 葵青区| 大邑县| 南京市| 格尔木市| 柘城县| 岳阳县| 崇明县| 岳阳市|