找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Wave Equations in Higher Dimensions; Shi-Hai Dong Book 2011 Springer Science+Business Media B.V. 2011 High dimension quantum theory.Higher

[復(fù)制鏈接]
樓主: grateful
61#
發(fā)表于 2025-4-1 05:14:21 | 只看該作者
62#
發(fā)表于 2025-4-1 09:00:52 | 只看該作者
Introductioned that many works along this line have been carried out in the usual three dimensional space. However, what extra dimensions could there possibly be if we never see them? It turns out that we do not really know yet how many dimensions our world has. Nevertheless, all that our current observations t
63#
發(fā)表于 2025-4-1 10:40:43 | 只看該作者
Dirac Equation in Higher Dimensionseen contributed to the Schr?dinger equation case. On the contrary, the studies of the Dirac equation in higher dimensions are less than those of the Schr?dinger equation case except for the works in usual three-, two- and one-dimensional space. In this Chapter, we shall generalize the Dirac equation
64#
發(fā)表于 2025-4-1 16:43:06 | 只看該作者
Special Orthogonal Group SO(,)fined by orthogonal .×. matrices, we shall give a brief review of some basic properties of group O(.) based on the monographs and textbooks. We first outline the development in order to make the reader recognize its importance in physics and then review the tensor and spinor representations of the g
65#
發(fā)表于 2025-4-1 22:12:10 | 只看該作者
Klein-Gordon Equation in Higher Dimensions in quantum mechanics. As illustrated above, the main contributions have been made to the Schr?dinger and Dirac equations. During the past several decades, however, the Klein-Gordon equation with the Coulomb potential has been studied in three dimensions such as the operator analysis, in an intense
66#
發(fā)表于 2025-4-2 01:15:11 | 只看該作者
Rotational Symmetry and Schr?dinger Equation in ,-Dimensional Spacehe object still looks the same, i.e., it matches itself a number of times while it is being rotated. In the language of quantum mechanics, isotropy of space means that the system Hamiltonian keeps invariant by a rotation. In our case the Schr?dinger equation with the spherically symmetric fields pos
67#
發(fā)表于 2025-4-2 05:34:43 | 只看該作者
Harmonic Oscillator quantum mechanics. Even though the linear harmonic oscillator may represent rather non-elementary objects like a solid and a molecule, it provides a window into the most elementary structure of the physical world. In this Chapter, we shall study its exact solutions in arbitrary dimensions, the recu
68#
發(fā)表于 2025-4-2 09:09:32 | 只看該作者
69#
發(fā)表于 2025-4-2 12:56:57 | 只看該作者
70#
發(fā)表于 2025-4-2 17:05:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平邑县| 江门市| 金塔县| 苏尼特右旗| 乡城县| 肥城市| 武鸣县| 天门市| 曲周县| 海兴县| 盘山县| 东港市| 松桃| 汉沽区| 贵定县| 望江县| 宁远县| 邢台县| 彭泽县| 临沧市| 象山县| 丰镇市| 汪清县| 井研县| 新巴尔虎左旗| 洪泽县| 云阳县| 平阴县| 德令哈市| 蕲春县| 佛坪县| 寿宁县| 高州市| 二连浩特市| 营口市| 华蓥市| 科技| 平谷区| 临泽县| 家居| 双辽市|