找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Water Waves and Ship Hydrodynamics; An Introduction A.J. Hermans Book 2011Latest edition Springer Science+Business Media B.V. 2011 dredging

[復制鏈接]
樓主: Extraneous
11#
發(fā)表于 2025-3-23 12:59:47 | 只看該作者
Boundary Integral Formulation and Ship Motions,armonic in time there are different ways to formulate an integral equation. A popular formulation, described in this chapter, is the one in the frequency domain. A less frequently used approach is a formulation in the time domain. The advantage of the latter approach is that the source function is r
12#
發(fā)表于 2025-3-23 14:28:05 | 只看該作者
Boundary Integral Formulation and Ship Motions,armonic in time there are different ways to formulate an integral equation. A popular formulation, described in this chapter, is the one in the frequency domain. A less frequently used approach is a formulation in the time domain. The advantage of the latter approach is that the source function is r
13#
發(fā)表于 2025-3-23 18:45:18 | 只看該作者
14#
發(fā)表于 2025-3-23 23:16:43 | 只看該作者
15#
發(fā)表于 2025-3-24 04:22:30 | 只看該作者
16#
發(fā)表于 2025-3-24 09:48:12 | 只看該作者
17#
發(fā)表于 2025-3-24 13:25:33 | 只看該作者
18#
發(fā)表于 2025-3-24 17:35:09 | 只看該作者
19#
發(fā)表于 2025-3-24 20:11:07 | 只看該作者
Irregular and Non-linear Waves,ace and time. Section?. contains a brief description of the Wiener spectrum in connection with the generalised Fourier representations for the surface waves (S. Bochner, Vorlesungen über Fouriersche Integrale, Chelsea, . and N. Wiener, The Fourier Integral and certain of Its Applications, Dover, .).
20#
發(fā)表于 2025-3-25 00:08:28 | 只看該作者
Irregular and Non-linear Waves,ace and time. Section?. contains a brief description of the Wiener spectrum in connection with the generalised Fourier representations for the surface waves (S. Bochner, Vorlesungen über Fouriersche Integrale, Chelsea, . and N. Wiener, The Fourier Integral and certain of Its Applications, Dover, .).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
平江县| 公安县| 普定县| 丰县| 万年县| 钦州市| 靖江市| 马边| 珲春市| 环江| 莲花县| 安福县| 平凉市| 青州市| 武穴市| 元江| 五大连池市| 海林市| 安乡县| 夏邑县| 大英县| 北宁市| 隆德县| 山西省| 井研县| 松原市| 永和县| 浮山县| 额济纳旗| 双桥区| 天等县| 简阳市| 潢川县| 娄烦县| 吴堡县| 威远县| 黑龙江省| 景泰县| 苍梧县| 靖江市| 兴宁市|