找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Water Waves and Ship Hydrodynamics; An Introduction A.J. Hermans Book 2011Latest edition Springer Science+Business Media B.V. 2011 dredging

[復制鏈接]
樓主: Extraneous
11#
發(fā)表于 2025-3-23 12:59:47 | 只看該作者
Boundary Integral Formulation and Ship Motions,armonic in time there are different ways to formulate an integral equation. A popular formulation, described in this chapter, is the one in the frequency domain. A less frequently used approach is a formulation in the time domain. The advantage of the latter approach is that the source function is r
12#
發(fā)表于 2025-3-23 14:28:05 | 只看該作者
Boundary Integral Formulation and Ship Motions,armonic in time there are different ways to formulate an integral equation. A popular formulation, described in this chapter, is the one in the frequency domain. A less frequently used approach is a formulation in the time domain. The advantage of the latter approach is that the source function is r
13#
發(fā)表于 2025-3-23 18:45:18 | 只看該作者
14#
發(fā)表于 2025-3-23 23:16:43 | 只看該作者
15#
發(fā)表于 2025-3-24 04:22:30 | 只看該作者
16#
發(fā)表于 2025-3-24 09:48:12 | 只看該作者
17#
發(fā)表于 2025-3-24 13:25:33 | 只看該作者
18#
發(fā)表于 2025-3-24 17:35:09 | 只看該作者
19#
發(fā)表于 2025-3-24 20:11:07 | 只看該作者
Irregular and Non-linear Waves,ace and time. Section?. contains a brief description of the Wiener spectrum in connection with the generalised Fourier representations for the surface waves (S. Bochner, Vorlesungen über Fouriersche Integrale, Chelsea, . and N. Wiener, The Fourier Integral and certain of Its Applications, Dover, .).
20#
發(fā)表于 2025-3-25 00:08:28 | 只看該作者
Irregular and Non-linear Waves,ace and time. Section?. contains a brief description of the Wiener spectrum in connection with the generalised Fourier representations for the surface waves (S. Bochner, Vorlesungen über Fouriersche Integrale, Chelsea, . and N. Wiener, The Fourier Integral and certain of Its Applications, Dover, .).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
中山市| 平昌县| 徐汇区| 措美县| 高安市| 郁南县| 都兰县| 方城县| 罗定市| 兰溪市| 霞浦县| 中超| 东丰县| 萍乡市| 越西县| 乳山市| 竹北市| 德庆县| 白山市| 孟津县| 甘孜| 即墨市| 昭苏县| 福建省| 西和县| 德惠市| 泰和县| 开封县| 阳朔县| 正安县| 汕尾市| 德江县| 弥渡县| 平遥县| 沙河市| 华池县| 昌宁县| 柯坪县| 普宁市| 东丰县| 油尖旺区|