找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Was k?nnen wir wissen?; Mit Physik bis zur G Josef Honerkamp Book 2013 Springer-Verlag GmbH Berlin Heidelberg 2013 Evolution.Kritik.Neurowi

[復(fù)制鏈接]
樓主: Glycemic-Index
11#
發(fā)表于 2025-3-23 13:39:32 | 只看該作者
12#
發(fā)表于 2025-3-23 17:24:51 | 只看該作者
Josef Honerkampetermined and classified. Some conclusions are drawn concerning the properties of the corresponding covariant equations of motion and a group theoretical definition of an elementary particle in interaction with such a field is proposed (The special case of zero field reduces of course to the known r
13#
發(fā)表于 2025-3-23 19:50:34 | 只看該作者
Josef Honerkampons . and . to be eigenfunctions for the unperturbed Hamiltonian, which are basis functions for irreducible representations of the group of Schr?dinger’s equation. Here . transforms according to an irreducible representation of the group of Schr?dinger’s equation. This product involves the direct pr
14#
發(fā)表于 2025-3-23 23:08:57 | 只看該作者
Josef Honerkamprepresentations. The results are applied to chemical reaction theory, and to the theory of the Jahn–Teller effect. Selection rules are illustrated for linear and circular dichroism. Finally, the polyhedral Euler theorem is introduced and applied to valence-bond theory for clusters.
15#
發(fā)表于 2025-3-24 03:15:03 | 只看該作者
Josef Honerkamprepresentations. The results are applied to chemical reaction theory, and to the theory of?the Jahn–Teller effect. Selection rules?are illustrated for linear and circular dichroism. Finally, the polyhedral Euler theorem?is introduced and applied to valence-bond theory for clusters.
16#
發(fā)表于 2025-3-24 09:48:47 | 只看該作者
17#
發(fā)表于 2025-3-24 14:24:51 | 只看該作者
Josef Honerkampons in the Hilbert space of quantum mechanics. The second reason for dealing with these transformations is the fact that certain operators encountered in quantum mechanics may be interpreted as representatives of underlying geometric transformations in classical phase space. This applies in particul
18#
發(fā)表于 2025-3-24 18:34:57 | 只看該作者
19#
發(fā)表于 2025-3-24 21:20:43 | 只看該作者
20#
發(fā)表于 2025-3-25 01:03:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大姚县| 沙洋县| 榆树市| 麦盖提县| 密云县| 阿图什市| 额敏县| 浦县| 修武县| 江北区| 广水市| 湖南省| 玛纳斯县| 苍溪县| 东乌珠穆沁旗| 溧阳市| 固始县| 沾化县| 阿瓦提县| 万安县| 涪陵区| 新营市| 离岛区| 南汇区| 库车县| 潼关县| 洱源县| 顺平县| 安化县| 淮南市| 龙门县| 珲春市| 眉山市| 龙江县| 汤阴县| 迭部县| 杭锦后旗| 乃东县| 梁山县| 大姚县| 靖远县|