找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: War Finance, Reconstruction, Hyperinflation and Stabilization in Hungary, 1938–48; Pierre L. Siklos Book 1991 Pierre L. Siklos 1991 financ

[復制鏈接]
查看: 37336|回復: 64
樓主
發(fā)表于 2025-3-21 19:29:39 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱War Finance, Reconstruction, Hyperinflation and Stabilization in Hungary, 1938–48
編輯Pierre L. Siklos
視頻videohttp://file.papertrans.cn/1021/1020456/1020456.mp4
圖書封面Titlebook: War Finance, Reconstruction, Hyperinflation and Stabilization in Hungary, 1938–48;  Pierre L. Siklos Book 1991 Pierre L. Siklos 1991 financ
出版日期Book 1991
關鍵詞finance; Hyperinflation; Inflation
版次1
doihttps://doi.org/10.1007/978-1-349-21325-2
isbn_softcover978-1-349-21327-6
isbn_ebook978-1-349-21325-2
copyrightPierre L. Siklos 1991
The information of publication is updating

書目名稱War Finance, Reconstruction, Hyperinflation and Stabilization in Hungary, 1938–48影響因子(影響力)




書目名稱War Finance, Reconstruction, Hyperinflation and Stabilization in Hungary, 1938–48影響因子(影響力)學科排名




書目名稱War Finance, Reconstruction, Hyperinflation and Stabilization in Hungary, 1938–48網(wǎng)絡公開度




書目名稱War Finance, Reconstruction, Hyperinflation and Stabilization in Hungary, 1938–48網(wǎng)絡公開度學科排名




書目名稱War Finance, Reconstruction, Hyperinflation and Stabilization in Hungary, 1938–48被引頻次




書目名稱War Finance, Reconstruction, Hyperinflation and Stabilization in Hungary, 1938–48被引頻次學科排名




書目名稱War Finance, Reconstruction, Hyperinflation and Stabilization in Hungary, 1938–48年度引用




書目名稱War Finance, Reconstruction, Hyperinflation and Stabilization in Hungary, 1938–48年度引用學科排名




書目名稱War Finance, Reconstruction, Hyperinflation and Stabilization in Hungary, 1938–48讀者反饋




書目名稱War Finance, Reconstruction, Hyperinflation and Stabilization in Hungary, 1938–48讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:31:17 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:35:26 | 只看該作者
地板
發(fā)表于 2025-3-22 06:50:40 | 只看該作者
Pierre L. Siklosode similarity under both network structures and contents. To deal with network structures, most existing works assume a given or enumerable set of meta-paths and then leverage them for the computation of meta-path-based proximities or network embeddings. However, expert knowledge for given meta-pat
5#
發(fā)表于 2025-3-22 11:07:28 | 只看該作者
Pierre L. Sikloslso plays a vital role in facilitating the downstream offline data analysis process. The sPHENIX detector, located at the Relativistic Heavy Ion Collider in Brookhaven National Laboratory, is one of the largest nuclear physics experiments on a world scale and is optimized to detect physics processes
6#
發(fā)表于 2025-3-22 14:32:25 | 只看該作者
Pierre L. Siklostain a cluster structure over the data points generated by the entire network. Usual techniques operate by forwarding and concentrating the entire data in a central server, processing it as a multivariate stream. In this paper, we propose ., a new distributed algorithm which reduces both the dimensi
7#
發(fā)表于 2025-3-22 18:14:46 | 只看該作者
Pierre L. Siklosi) a simple convex term, and (iii) a concave and continuous term. First, by extending randomized CD to nonsmooth nonconvex settings, we develop a coordinate subgradient method that randomly updates block-coordinate variables by using block composite subgradient mapping. This method converges asympto
8#
發(fā)表于 2025-3-22 22:18:52 | 只看該作者
Pierre L. Siklos (CL) or a lower-bound surrogate of the CL. One training procedure is based on the extended Baum-Welch (EBW) algorithm. Similarly, the remaining two approaches iteratively optimize the parameters (initialized to ML) with a 2-step algorithm. In the first step, either the class posterior probabilities
9#
發(fā)表于 2025-3-23 03:01:49 | 只看該作者
Pierre L. Sikloson method exploits the latent feature space learned through an adversarial autoencoder. The proposed method first generates exemplar images in the latent feature space and learns a decision tree classifier. Then, it selects and decodes exemplars respecting local decision rules. Finally, it visualize
10#
發(fā)表于 2025-3-23 07:29:07 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
巴楚县| 余江县| 安岳县| 永新县| 讷河市| 平南县| 巴南区| 延川县| 德安县| 疏勒县| 边坝县| 东乡族自治县| 青田县| 乐陵市| 林甸县| 奇台县| 大关县| 沙坪坝区| 阿拉善右旗| 息烽县| 枣庄市| 布尔津县| 聊城市| 丰都县| 东光县| 江川县| 肥东县| 桂阳县| 棋牌| 沁水县| 衡阳县| 巧家县| 仁布县| 奈曼旗| 鄄城县| 抚州市| 尉氏县| 福清市| 绥棱县| 苏州市| 吴江市|