找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Walsh Series and Transforms; Theory and Applicati B. Golubov,A. Efimov,V. Skvortsov Book 1991 Springer Science+Business Media Dordrecht 199

[復(fù)制鏈接]
樓主: FETUS
41#
發(fā)表于 2025-3-28 15:45:32 | 只看該作者
42#
發(fā)表于 2025-3-28 22:24:08 | 只看該作者
43#
發(fā)表于 2025-3-29 01:05:45 | 只看該作者
Operators in the Theory of Walsh-Fourier Series,In this chapter, and the next, we shall obtain several results about Walsh-Fourier series by using properties of operators which take one space of measurable functions to another. We begin with definitions and some simple properties of the class of operators we wish to use.
44#
發(fā)表于 2025-3-29 06:34:53 | 只看該作者
Operators in the Theory of Walsh-Fourier Series,In this chapter, and the next, we shall obtain several results about Walsh-Fourier series by using properties of operators which take one space of measurable functions to another. We begin with definitions and some simple properties of the class of operators we wish to use.
45#
發(fā)表于 2025-3-29 08:06:46 | 只看該作者
46#
發(fā)表于 2025-3-29 13:30:39 | 只看該作者
Generalized Multiplicative Transforms,Let 1 ≤ . < ∞. A complex valued function .(.) is said to belong to .(0, ∞) if ∫.|.(.)|. > ∞. The norm of .(.) in the space .(0, ∞) will be denoted by ∥.∥. and is defined by
47#
發(fā)表于 2025-3-29 16:21:48 | 只看該作者
48#
發(fā)表于 2025-3-29 22:36:16 | 只看該作者
49#
發(fā)表于 2025-3-30 02:43:08 | 只看該作者
50#
發(fā)表于 2025-3-30 04:57:21 | 只看該作者
Lacunary Subsystems of the Walsh System,The Rademacher system, {.(.)} = {., . = 0,1,…, which was used to define the Walsh system (see §1.1), is a typical example of what is called a . of the Walsh system. We shall study these systems in the next several sections.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孟连| 西华县| 余姚市| 铅山县| 九龙坡区| 宜城市| 南岸区| 陵川县| 通化县| 龙泉市| 新密市| 长宁区| 凌源市| 临安市| 铁岭县| 柯坪县| 德庆县| 平江县| 黑龙江省| 大同县| 和林格尔县| 永靖县| 大邑县| 玉林市| 且末县| 新化县| 天峻县| 安庆市| 紫金县| 河北省| 墨脱县| 邳州市| 亚东县| 东平县| 荥阳市| 遂溪县| 崇信县| 皮山县| 徐水县| 霍邱县| 临朐县|