找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Walsh Series and Transforms; Theory and Applicati B. Golubov,A. Efimov,V. Skvortsov Book 1991 Springer Science+Business Media Dordrecht 199

[復(fù)制鏈接]
樓主: FETUS
41#
發(fā)表于 2025-3-28 15:45:32 | 只看該作者
42#
發(fā)表于 2025-3-28 22:24:08 | 只看該作者
43#
發(fā)表于 2025-3-29 01:05:45 | 只看該作者
Operators in the Theory of Walsh-Fourier Series,In this chapter, and the next, we shall obtain several results about Walsh-Fourier series by using properties of operators which take one space of measurable functions to another. We begin with definitions and some simple properties of the class of operators we wish to use.
44#
發(fā)表于 2025-3-29 06:34:53 | 只看該作者
Operators in the Theory of Walsh-Fourier Series,In this chapter, and the next, we shall obtain several results about Walsh-Fourier series by using properties of operators which take one space of measurable functions to another. We begin with definitions and some simple properties of the class of operators we wish to use.
45#
發(fā)表于 2025-3-29 08:06:46 | 只看該作者
46#
發(fā)表于 2025-3-29 13:30:39 | 只看該作者
Generalized Multiplicative Transforms,Let 1 ≤ . < ∞. A complex valued function .(.) is said to belong to .(0, ∞) if ∫.|.(.)|. > ∞. The norm of .(.) in the space .(0, ∞) will be denoted by ∥.∥. and is defined by
47#
發(fā)表于 2025-3-29 16:21:48 | 只看該作者
48#
發(fā)表于 2025-3-29 22:36:16 | 只看該作者
49#
發(fā)表于 2025-3-30 02:43:08 | 只看該作者
50#
發(fā)表于 2025-3-30 04:57:21 | 只看該作者
Lacunary Subsystems of the Walsh System,The Rademacher system, {.(.)} = {., . = 0,1,…, which was used to define the Walsh system (see §1.1), is a typical example of what is called a . of the Walsh system. We shall study these systems in the next several sections.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
图木舒克市| 平武县| 乐平市| 商城县| 石门县| 新沂市| 中牟县| 阿巴嘎旗| 宜良县| 九龙坡区| 井冈山市| 双城市| 法库县| 翼城县| 雅安市| 海城市| 天柱县| 高碑店市| 滨海县| 罗甸县| 交口县| 乡城县| 东辽县| 临邑县| 翁源县| 神木县| 东阳市| 瑞丽市| 集安市| 胶州市| 蒲江县| 安岳县| 天水市| 全南县| 大冶市| 邵东县| 虹口区| 长丰县| 蒙山县| 思南县| 梧州市|