找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points; Third International Ron Kohavi,Brij M. Masand,Jaideep Srivastava Conf

[復(fù)制鏈接]
查看: 17827|回復(fù): 50
樓主
發(fā)表于 2025-3-21 16:58:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points
副標(biāo)題Third International
編輯Ron Kohavi,Brij M. Masand,Jaideep Srivastava
視頻videohttp://file.papertrans.cn/1021/1020055/1020055.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points; Third International  Ron Kohavi,Brij M. Masand,Jaideep Srivastava Conf
描述WorkshopTheme The ease and speed with which business transactions can be carried out over the Web has been a key driving force in the rapid growth of electronic commerce. In addition, customer interactions, including personalized content, e-mail c- paigns, and online feedback provide new channels of communication that were not previously available or were very ine?cient. The Web presents a key driving force in the rapid growth of electronic c- merceandanewchannelforcontentproviders.Knowledgeaboutthecustomeris fundamental for the establishment of viable e-commerce solutions. Rich web logs provide companies with data about their customers and prospective customers, allowing micro-segmentation and personalized interactions. Customer acqui- tion costs in the hundreds of dollars per customer are common, justifying heavy emphasis on correct targeting. Once customers are acquired, customer retention becomes the target. Retention through customer satisfaction and loyalty can be greatly improved by acquiring and exploiting knowledge about these customers and their needs. Althoughweblogsarethesourceforvaluableknowledgepatterns,oneshould keep in mind that the Web is only one of the interactio
出版日期Conference proceedings 2002
關(guān)鍵詞Association Rule Mining; Cisco; Cluster Analysis; Customer Management; Data Mining; E-Commerce; Internet D
版次1
doihttps://doi.org/10.1007/3-540-45640-6
isbn_softcover978-3-540-43969-1
isbn_ebook978-3-540-45640-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2002
The information of publication is updating

書目名稱WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points影響因子(影響力)




書目名稱WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points影響因子(影響力)學(xué)科排名




書目名稱WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points網(wǎng)絡(luò)公開度




書目名稱WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points被引頻次




書目名稱WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points被引頻次學(xué)科排名




書目名稱WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points年度引用




書目名稱WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points年度引用學(xué)科排名




書目名稱WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points讀者反饋




書目名稱WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:01:28 | 只看該作者
Detail and Context in Web Usage Mining: Coarsening and Visualizing Sequences,cording Web usage become more complex. While Web usage mining provides for the syntactic specification of structured patterns like association rules or (generalized) sequences, it is less clear how to analyze and visualize usage data involving longer patterns with little expected structure, without
板凳
發(fā)表于 2025-3-22 02:09:49 | 只看該作者
Detail and Context in Web Usage Mining: Coarsening and Visualizing Sequences,cording Web usage become more complex. While Web usage mining provides for the syntactic specification of structured patterns like association rules or (generalized) sequences, it is less clear how to analyze and visualize usage data involving longer patterns with little expected structure, without
地板
發(fā)表于 2025-3-22 06:50:51 | 只看該作者
5#
發(fā)表于 2025-3-22 11:35:10 | 只看該作者
6#
發(fā)表于 2025-3-22 13:56:00 | 只看該作者
A Cube Model and Cluster Analysis for Web Access Sessions,n e-commerce. Clustering and sequential analysis are two primary techniques for mining navigational patterns from Web and application server logs. The characteristics of the log data and mining tasks require new data representation methods and analysis algorithms to be tested in the e-commerce envir
7#
發(fā)表于 2025-3-22 18:46:41 | 只看該作者
8#
發(fā)表于 2025-3-23 00:52:09 | 只看該作者
9#
發(fā)表于 2025-3-23 05:20:19 | 只看該作者
10#
發(fā)表于 2025-3-23 06:16:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐津县| 从江县| 鄄城县| 邻水| 沂南县| 海盐县| 泗水县| 麻栗坡县| 察雅县| 郴州市| 乌兰察布市| 兰溪市| 景东| 乐山市| 武夷山市| 乌鲁木齐市| 蚌埠市| 阿拉尔市| 竹溪县| 迁西县| 长丰县| 会同县| 秦皇岛市| 辰溪县| 靖西县| 保山市| 南皮县| 江华| 麻阳| 安图县| 平度市| 大竹县| 肥城市| 余江县| 铜鼓县| 凤台县| 罗山县| 工布江达县| 镇宁| 石家庄市| 邵武市|