找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: WALCOM: Algorithms and Computation; 16th International C Petra Mutzel,Md. Saidur Rahman,Slamin Conference proceedings 2022 Springer Nature

[復(fù)制鏈接]
樓主: 請回避
11#
發(fā)表于 2025-3-23 12:38:18 | 只看該作者
12#
發(fā)表于 2025-3-23 14:46:06 | 只看該作者
13#
發(fā)表于 2025-3-23 21:41:56 | 只看該作者
The Polygon Burning Problemtype of polygon, the sliceable polygon. A sliceable polygon is a convex polygon that contains no Voronoi vertex from the Voronoi diagram of its vertices. We give a dynamic programming algorithm to solve PB exactly on a sliceable polygon in . time.
14#
發(fā)表于 2025-3-23 22:12:30 | 只看該作者
The Polygon Burning Problemtype of polygon, the sliceable polygon. A sliceable polygon is a convex polygon that contains no Voronoi vertex from the Voronoi diagram of its vertices. We give a dynamic programming algorithm to solve PB exactly on a sliceable polygon in . time.
15#
發(fā)表于 2025-3-24 06:09:15 | 只看該作者
16#
發(fā)表于 2025-3-24 06:46:34 | 只看該作者
Some Problems Related to the Space of Optimal Tree Reconciliationsbased on their phylogenetic information. Indeed, informally speaking, it reconciles any differences between two phylogenetic trees by means of biological events. Tree reconciliation is usually computed according to the parsimony principle, that is, to each evolutionary event a cost is assigned and t
17#
發(fā)表于 2025-3-24 11:15:17 | 只看該作者
18#
發(fā)表于 2025-3-24 18:04:45 | 只看該作者
19#
發(fā)表于 2025-3-24 20:06:19 | 只看該作者
20#
發(fā)表于 2025-3-25 00:58:14 | 只看該作者
Invitation to Combinatorial Reconfigurationnce of a search problem. Many reconfiguration problems have been shown PSPACE-complete, while several algorithmic techniques have been developed. In this talk, I will give a broad introduction of combinatorial reconfiguration.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高雄市| 淳化县| 临漳县| 江陵县| 枞阳县| 当雄县| 津市市| 清苑县| 沁阳市| 晋州市| 东丰县| 胶州市| 康定县| 昌吉市| 慈溪市| 尤溪县| 五莲县| 泰来县| 临泉县| 牡丹江市| 奉化市| 临猗县| 阿图什市| 台湾省| 名山县| 临颍县| 灵璧县| 历史| 钦州市| 那坡县| 中阳县| 清新县| 绥棱县| 五华县| 喀什市| 彰武县| 海丰县| 昂仁县| 阳泉市| 南召县| 大邑县|