找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: WALCOM: Algorithms and Computation; 16th International C Petra Mutzel,Md. Saidur Rahman,Slamin Conference proceedings 2022 Springer Nature

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:38:18 | 只看該作者
12#
發(fā)表于 2025-3-23 14:46:06 | 只看該作者
13#
發(fā)表于 2025-3-23 21:41:56 | 只看該作者
The Polygon Burning Problemtype of polygon, the sliceable polygon. A sliceable polygon is a convex polygon that contains no Voronoi vertex from the Voronoi diagram of its vertices. We give a dynamic programming algorithm to solve PB exactly on a sliceable polygon in . time.
14#
發(fā)表于 2025-3-23 22:12:30 | 只看該作者
The Polygon Burning Problemtype of polygon, the sliceable polygon. A sliceable polygon is a convex polygon that contains no Voronoi vertex from the Voronoi diagram of its vertices. We give a dynamic programming algorithm to solve PB exactly on a sliceable polygon in . time.
15#
發(fā)表于 2025-3-24 06:09:15 | 只看該作者
16#
發(fā)表于 2025-3-24 06:46:34 | 只看該作者
Some Problems Related to the Space of Optimal Tree Reconciliationsbased on their phylogenetic information. Indeed, informally speaking, it reconciles any differences between two phylogenetic trees by means of biological events. Tree reconciliation is usually computed according to the parsimony principle, that is, to each evolutionary event a cost is assigned and t
17#
發(fā)表于 2025-3-24 11:15:17 | 只看該作者
18#
發(fā)表于 2025-3-24 18:04:45 | 只看該作者
19#
發(fā)表于 2025-3-24 20:06:19 | 只看該作者
20#
發(fā)表于 2025-3-25 00:58:14 | 只看該作者
Invitation to Combinatorial Reconfigurationnce of a search problem. Many reconfiguration problems have been shown PSPACE-complete, while several algorithmic techniques have been developed. In this talk, I will give a broad introduction of combinatorial reconfiguration.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康定县| 长治市| 安义县| 襄樊市| 阳山县| 灵璧县| 肇源县| 昌都县| 石城县| 平利县| 荥经县| 德化县| 霸州市| 邵东县| 台南市| 克什克腾旗| 柳江县| 定日县| 祥云县| 青海省| 靖西县| 东至县| 绍兴市| 新化县| 巩义市| 临武县| 南靖县| 江源县| 无极县| 屏边| 望都县| 萨嘎县| 诸城市| 德清县| 耿马| 鹿邑县| 宜春市| 吴旗县| 如东县| 阿勒泰市| 泰安市|