找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: WALCOM: Algorithms and Computation; 16th International C Petra Mutzel,Md. Saidur Rahman,Slamin Conference proceedings 2022 Springer Nature

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:38:18 | 只看該作者
12#
發(fā)表于 2025-3-23 14:46:06 | 只看該作者
13#
發(fā)表于 2025-3-23 21:41:56 | 只看該作者
The Polygon Burning Problemtype of polygon, the sliceable polygon. A sliceable polygon is a convex polygon that contains no Voronoi vertex from the Voronoi diagram of its vertices. We give a dynamic programming algorithm to solve PB exactly on a sliceable polygon in . time.
14#
發(fā)表于 2025-3-23 22:12:30 | 只看該作者
The Polygon Burning Problemtype of polygon, the sliceable polygon. A sliceable polygon is a convex polygon that contains no Voronoi vertex from the Voronoi diagram of its vertices. We give a dynamic programming algorithm to solve PB exactly on a sliceable polygon in . time.
15#
發(fā)表于 2025-3-24 06:09:15 | 只看該作者
16#
發(fā)表于 2025-3-24 06:46:34 | 只看該作者
Some Problems Related to the Space of Optimal Tree Reconciliationsbased on their phylogenetic information. Indeed, informally speaking, it reconciles any differences between two phylogenetic trees by means of biological events. Tree reconciliation is usually computed according to the parsimony principle, that is, to each evolutionary event a cost is assigned and t
17#
發(fā)表于 2025-3-24 11:15:17 | 只看該作者
18#
發(fā)表于 2025-3-24 18:04:45 | 只看該作者
19#
發(fā)表于 2025-3-24 20:06:19 | 只看該作者
20#
發(fā)表于 2025-3-25 00:58:14 | 只看該作者
Invitation to Combinatorial Reconfigurationnce of a search problem. Many reconfiguration problems have been shown PSPACE-complete, while several algorithmic techniques have been developed. In this talk, I will give a broad introduction of combinatorial reconfiguration.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊宁市| 固始县| 新建县| 新郑市| 太仓市| 鸡西市| 恩平市| 加查县| 盐城市| 方正县| 东平县| 龙海市| 齐齐哈尔市| 格尔木市| 广汉市| 凌海市| 台东县| 廉江市| 保德县| 东港市| 高雄县| 师宗县| 泰兴市| 永兴县| 肥东县| 广汉市| 当涂县| 济南市| 花莲县| 鄂温| 瑞安市| 万州区| 新营市| 北京市| 迁安市| 铁岭市| 濉溪县| 福安市| 南昌市| 伊金霍洛旗| 若羌县|