找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345678
返回列表
打印 上一主題 下一主題

Titlebook: WALCOM: Algorithms and Computation; 18th International C Ryuhei Uehara,Katsuhisa Yamanaka,Hsu-Chun Yen Conference proceedings 2024 The Edit

[復(fù)制鏈接]
71#
發(fā)表于 2025-4-2 21:19:39 | 只看該作者
,Plane Multigraphs with?One-Bend and?Circular-Arc Edges of?a?Fixed Angle,ments, or (ii) circular arcs of central angle .. We derive upper and lower bounds on the maximum density of such graphs in terms of .. As an application, we improve upon bounds for the number of edges in . graphs (i.e., graphs that can be drawn in the plane with one-bend edges such that any two cros
72#
發(fā)表于 2025-4-2 23:38:14 | 只看該作者
Quantum Graph Drawing [Best Student Paper],. Concerning 2-level drawings, we consider the problems of obtaining drawings with the minimum number of crossings, .-planar drawings, quasi-planar drawings, and the problem of removing the minimum number of edges to obtain a 2-level planar graph. Concerning book layouts, we consider the problems of
73#
發(fā)表于 2025-4-3 04:45:26 | 只看該作者
74#
發(fā)表于 2025-4-3 08:05:30 | 只看該作者
,Simultaneous Drawing of?Layered Trees,st layer, which adheres to the embedding of each individual tree. The task is then to permute the vertices on the other layers (respecting the given tree embeddings) in order to minimize the number of crossings. While this problem is known to be NP-hard for multiple trees even on just two layers, we
75#
發(fā)表于 2025-4-3 14:25:21 | 只看該作者
,Simultaneous Drawing of?Layered Trees,st layer, which adheres to the embedding of each individual tree. The task is then to permute the vertices on the other layers (respecting the given tree embeddings) in order to minimize the number of crossings. While this problem is known to be NP-hard for multiple trees even on just two layers, we
12345678
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 04:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
重庆市| 丰台区| 彰化市| 云梦县| 太仆寺旗| 乳源| 怀安县| 云安县| 高唐县| 南通市| 钟山县| 拉萨市| 玉门市| 冷水江市| 永嘉县| 乌拉特中旗| 周至县| 桃源县| 平原县| 宁陵县| 内丘县| 古丈县| 迁安市| 瑞金市| 姚安县| 全南县| 义乌市| 渝中区| 渭源县| 抚顺县| 江永县| 盈江县| 德阳市| 柞水县| 潍坊市| 永善县| 霍州市| 文成县| 建昌县| 米易县| 临泽县|