找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: WALCOM: Algorithms and Computation; 18th International C Ryuhei Uehara,Katsuhisa Yamanaka,Hsu-Chun Yen Conference proceedings 2024 The Edit

[復(fù)制鏈接]
71#
發(fā)表于 2025-4-2 21:19:39 | 只看該作者
,Plane Multigraphs with?One-Bend and?Circular-Arc Edges of?a?Fixed Angle,ments, or (ii) circular arcs of central angle .. We derive upper and lower bounds on the maximum density of such graphs in terms of .. As an application, we improve upon bounds for the number of edges in . graphs (i.e., graphs that can be drawn in the plane with one-bend edges such that any two cros
72#
發(fā)表于 2025-4-2 23:38:14 | 只看該作者
Quantum Graph Drawing [Best Student Paper],. Concerning 2-level drawings, we consider the problems of obtaining drawings with the minimum number of crossings, .-planar drawings, quasi-planar drawings, and the problem of removing the minimum number of edges to obtain a 2-level planar graph. Concerning book layouts, we consider the problems of
73#
發(fā)表于 2025-4-3 04:45:26 | 只看該作者
74#
發(fā)表于 2025-4-3 08:05:30 | 只看該作者
,Simultaneous Drawing of?Layered Trees,st layer, which adheres to the embedding of each individual tree. The task is then to permute the vertices on the other layers (respecting the given tree embeddings) in order to minimize the number of crossings. While this problem is known to be NP-hard for multiple trees even on just two layers, we
75#
發(fā)表于 2025-4-3 14:25:21 | 只看該作者
,Simultaneous Drawing of?Layered Trees,st layer, which adheres to the embedding of each individual tree. The task is then to permute the vertices on the other layers (respecting the given tree embeddings) in order to minimize the number of crossings. While this problem is known to be NP-hard for multiple trees even on just two layers, we
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 09:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大化| 徐闻县| 津市市| 申扎县| 临城县| 克拉玛依市| 定兴县| 社会| 石城县| 聂拉木县| 那曲县| 仙居县| 吉木萨尔县| 大方县| 重庆市| 无为县| 沁源县| 房产| 原阳县| 尼勒克县| 都江堰市| 万安县| 资源县| 新民市| 措美县| 磐安县| 那坡县| 红桥区| 乌苏市| 文水县| 贺州市| 天等县| 犍为县| 佛坪县| 龙南县| 武义县| 高淳县| 广宁县| 东乡族自治县| 泰顺县| 兴义市|