找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: WALCOM: Algorithms and Computation; 18th International C Ryuhei Uehara,Katsuhisa Yamanaka,Hsu-Chun Yen Conference proceedings 2024 The Edit

[復(fù)制鏈接]
71#
發(fā)表于 2025-4-2 21:19:39 | 只看該作者
,Plane Multigraphs with?One-Bend and?Circular-Arc Edges of?a?Fixed Angle,ments, or (ii) circular arcs of central angle .. We derive upper and lower bounds on the maximum density of such graphs in terms of .. As an application, we improve upon bounds for the number of edges in . graphs (i.e., graphs that can be drawn in the plane with one-bend edges such that any two cros
72#
發(fā)表于 2025-4-2 23:38:14 | 只看該作者
Quantum Graph Drawing [Best Student Paper],. Concerning 2-level drawings, we consider the problems of obtaining drawings with the minimum number of crossings, .-planar drawings, quasi-planar drawings, and the problem of removing the minimum number of edges to obtain a 2-level planar graph. Concerning book layouts, we consider the problems of
73#
發(fā)表于 2025-4-3 04:45:26 | 只看該作者
74#
發(fā)表于 2025-4-3 08:05:30 | 只看該作者
,Simultaneous Drawing of?Layered Trees,st layer, which adheres to the embedding of each individual tree. The task is then to permute the vertices on the other layers (respecting the given tree embeddings) in order to minimize the number of crossings. While this problem is known to be NP-hard for multiple trees even on just two layers, we
75#
發(fā)表于 2025-4-3 14:25:21 | 只看該作者
,Simultaneous Drawing of?Layered Trees,st layer, which adheres to the embedding of each individual tree. The task is then to permute the vertices on the other layers (respecting the given tree embeddings) in order to minimize the number of crossings. While this problem is known to be NP-hard for multiple trees even on just two layers, we
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 09:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑水县| 贵德县| 大名县| 禹城市| 铜梁县| 湖口县| 乌鲁木齐县| 霍城县| 韩城市| 丰都县| 麻江县| 开原市| 光泽县| 潮安县| 临夏县| 长宁区| 综艺| 呼伦贝尔市| 荔浦县| 广安市| 香港| 晴隆县| 岑溪市| 泰宁县| 高邮市| 宜兰市| 铜川市| 南木林县| 巴楚县| 富平县| 泰宁县| 正宁县| 织金县| 金乡县| 汝阳县| 岳池县| 临汾市| 罗甸县| 银川市| 怀宁县| 清镇市|