找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: WALCOM: Algorithms and Computation; Third International Sandip Das,Ryuhei Uehara Conference proceedings 2009 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
樓主: ossicles
21#
發(fā)表于 2025-3-25 06:45:28 | 只看該作者
22#
發(fā)表于 2025-3-25 07:38:13 | 只看該作者
23#
發(fā)表于 2025-3-25 15:36:08 | 只看該作者
24#
發(fā)表于 2025-3-25 18:26:32 | 只看該作者
25#
發(fā)表于 2025-3-25 20:48:15 | 只看該作者
26#
發(fā)表于 2025-3-26 03:44:14 | 只看該作者
Maximum Neighbour Voronoi Games . points with the target of maximizing total Voronoi area of its sites in the Voronoi diagram of 2. points. In this paper we address this problem by introducing Voronoi games . where the basic objective of an optimal playing strategy is to acquire more neighbors than the opponent. We consider sever
27#
發(fā)表于 2025-3-26 05:39:52 | 只看該作者
28#
發(fā)表于 2025-3-26 12:01:48 | 只看該作者
On Exact Solutions to the Euclidean Bottleneck Steiner Tree Problemt most . Steiner points such that the length of the longest edge in the tree is minimized. This problem is known to be NP-hard even to approximate within ratio .. We focus on finding exact solutions to the problem for a small constant .. Based on geometric properties of optimal location of Steiner p
29#
發(fā)表于 2025-3-26 14:48:00 | 只看該作者
Colinear Coloring on Graphsrough which it was studied, we introduce the colinear coloring on graphs. We provide an upper bound for the chromatic number .(.), for any graph ., and show that . can be colinearly colored in polynomial time by proposing a simple algorithm. The colinear coloring of a graph . is a vertex coloring su
30#
發(fā)表于 2025-3-26 20:30:32 | 只看該作者
Colinear Coloring on Graphsrough which it was studied, we introduce the colinear coloring on graphs. We provide an upper bound for the chromatic number .(.), for any graph ., and show that . can be colinearly colored in polynomial time by proposing a simple algorithm. The colinear coloring of a graph . is a vertex coloring su
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
旌德县| 上杭县| 洪洞县| 彭泽县| 武汉市| 邮箱| 东兰县| 抚松县| 闻喜县| 孙吴县| 日土县| 山东| 余姚市| 绥棱县| 封开县| 石景山区| 昌都县| 龙江县| 会理县| 常山县| 泾阳县| 东光县| 长沙市| 崇州市| 渭源县| 黄梅县| 平利县| 张北县| 永宁县| 额尔古纳市| 阜城县| 黑山县| 连州市| 云龙县| 乌恰县| 克拉玛依市| 成都市| 郓城县| 安阳县| 莱阳市| 虎林市|