找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: éléments de Géométrie Rigide; Volume I. Constructi Ahmed Abbes Book 2011 Springer Basel AG 2011 Algebraic geometry.Number theory.Rigid anal

[復(fù)制鏈接]
樓主: dentin
21#
發(fā)表于 2025-3-25 03:22:11 | 只看該作者
22#
發(fā)表于 2025-3-25 07:55:31 | 只看該作者
,Géométrie formelle, with Western Germany and so steer the Germans away from nationalism and militarism.. By 1950 the French desire to control German independence had intensified because of the creation of a West German government the previous September, and the readiness of the American and British governments to rela
23#
發(fā)表于 2025-3-25 15:04:07 | 只看該作者
24#
發(fā)表于 2025-3-25 16:13:57 | 只看該作者
0743-1643 opological aspects of rigid spaces.of the flattening theorem.La géométrie rigide est devenue, au fil des ans, un outil indispensable dans un grand nombre de questions en géométrie arithmétique. Depuis ses premières fondations, posées par J. Tate en 1961, la théorie s‘est développée dans des directio
25#
發(fā)表于 2025-3-25 20:08:08 | 只看該作者
https://doi.org/10.1007/978-3-7091-5624-713.21, d? à Gabber, qui donne un complément au résultat de platification par éclatement admissible de Raynaud-Gruson ([42] 5.2.2), et de la section 1.16 qui généralise au cadre idyllique des résultats d’algébrisation d’Elkik [17].
26#
發(fā)表于 2025-3-26 02:53:47 | 只看該作者
https://doi.org/10.1007/978-3-7091-5624-7mple important, à savoir la cl?ture rigide d’un module. Nous démontrons le théorème d’. (3.5.5) qui établit le caractère rigide de cette notion pour les modules cohérents. Nous introduisons un autre exemple : les . d’un schéma formel idyllique.
27#
發(fā)表于 2025-3-26 04:58:22 | 只看該作者
28#
發(fā)表于 2025-3-26 08:49:16 | 只看該作者
29#
發(fā)表于 2025-3-26 15:34:44 | 只看該作者
30#
發(fā)表于 2025-3-26 19:56:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巨鹿县| 高尔夫| 顺平县| 海兴县| 翼城县| 惠东县| 美姑县| 神池县| 涿州市| 石渠县| 延长县| 肇东市| 易门县| 沙雅县| 任丘市| 石楼县| 泰顺县| 罗平县| 灵武市| 苏州市| 商都县| 扶风县| 拜城县| 萨嘎县| 龙陵县| 二手房| 晋江市| 桃园县| 滦南县| 南康市| 文化| 文成县| 彭泽县| 临沂市| 南靖县| 夏河县| 斗六市| 西畴县| 淮北市| 潼关县| 上杭县|