找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ?quivariante Torsion auf Kontakt-Mannigfaltigkeiten; Pascal Te?mer Book 2017 Springer Fachmedien Wiesbaden GmbH 2017 Kontaktgeometrie.Anal

[復(fù)制鏈接]
樓主: Aggrief
11#
發(fā)表于 2025-3-23 13:06:46 | 只看該作者
Ruixuan Li,Jiannong Cao,Julien Bourgeoisaplace-Operatoren nicht elliptisch sind. Für die asymptotische Entwicklung des W?rmeleitungskern eines solchen Operators ben?tigt man ein geeignetes Symbolenkalkül, was unter anderem von Beals und Greiner 1988 in [BG88] unter dem Namen Heisenbergkalkül eingeführt wurde. Dieses Kapitel soll die wicht
12#
發(fā)表于 2025-3-23 16:23:10 | 只看該作者
https://doi.org/10.1007/978-3-642-13067-0des vollen Komplexes betrachtet haben. Diesmal soll die Operation von γ berücksichtigt werden, wofür man die ?quivariante Determinante ben?tigt. Eine gegebene Mannigfaltigkeit wird in diesem Kapitel stets als . vorausgesetzt.
13#
發(fā)表于 2025-3-23 18:58:45 | 只看該作者
14#
發(fā)表于 2025-3-23 23:53:13 | 只看該作者
Jakob E. Bardram,Neelanarayanan Venkataramanstimmt. Nichtsdestotrotz ist die ?quivariante Kontakt-Torsion keine Kontakt-Invariante und sie h?ngt von der Kontaktform und der fast-komplexen-Struktur ab. Eine M?glichkeit, um mehr kontakt-invariante Eigenschaften herauszufinden, ist es die Koeffizienten der asymptotischen Entwicklung zu berechnen
15#
發(fā)表于 2025-3-24 02:31:30 | 只看該作者
https://doi.org/10.1007/978-3-658-17794-2Kontaktgeometrie; Analytische Torsion; Heisenberg-Mannigfaltigkeiten; Rumin-Komplex; Isolierte Fixpunkte
16#
發(fā)表于 2025-3-24 07:14:00 | 只看該作者
978-3-658-17793-5Springer Fachmedien Wiesbaden GmbH 2017
17#
發(fā)表于 2025-3-24 12:17:55 | 只看該作者
Conference proceedings 20051st editionDie Ideen für die Definition der Kontakt-Torsion basieren stark auf denen der analytischen Torsion. Deswegen ist es von Vorteil, wenn man wei?, wie die analytische Torsion aufgebaut ist und wie deren Herleitung aussieht, welche in diesem Kapitel erkl?rt wird. Wir setzen hier au?erdem voraus, dass eine gegebene Mannigfaltigkeit stets . ist.
18#
發(fā)表于 2025-3-24 17:38:03 | 只看該作者
19#
發(fā)表于 2025-3-24 22:06:46 | 只看該作者
Ning Luo,Weijun Zhong,Shu’e Meitate auch auf Kontakt-Mannigfaltigkeiten anwendbar sind. Der Hauptgrund ist der, dass die gleich folgenden Aussagen, welche in einigen Literaturen wie zum Beispiel in [GH78] für K?hlermannigfaltigkeiten bewiesen werden, wo die fast-komplexe Struktur integierbar ist, auch dann gelten, wenn die fast-komplexe Struktur nicht integrierbar ist.
20#
發(fā)表于 2025-3-25 01:01:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会宁县| 霍州市| 北海市| 琼海市| 阿坝县| 邛崃市| 乐昌市| 金乡县| 连江县| 油尖旺区| 革吉县| 科技| 津南区| 新郑市| 集安市| 乐陵市| 北票市| 巴东县| 孝义市| 辽宁省| 罗甸县| 政和县| 五寨县| 铜山县| 丰城市| 凤山县| 于田县| 如东县| 崇义县| 托克逊县| 吉水县| 通城县| 海阳市| 海晏县| 迁安市| 汪清县| 克东县| 旌德县| 天镇县| 冷水江市| 会泽县|