找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: 3D-Computation of Incompressible Internal Flows; Proceedings of the G Gabriel Sottas,Inge L. Ryhming Conference proceedings 1993 Springer F

[復(fù)制鏈接]
樓主: 五個
31#
發(fā)表于 2025-3-27 00:22:15 | 只看該作者
32#
發(fā)表于 2025-3-27 02:33:12 | 只看該作者
Image Restoration, Spatial StatisticsThe flow in the runner and the draft tube of the GAMM turbine was analyzed using two different types of Euler codes. The theoretical basis of the codes is outlined and the computational details are given, as well as some additional results.
33#
發(fā)表于 2025-3-27 05:53:21 | 只看該作者
Sampling from Finite PopulationsThe three-dimensional computation of incompressible internal flows was carried out for the runner and the distributor of the GAMM Francis turbine. The runner is calculated as potential flow using the finite element method and the distributor as viscous flow using the finite volume method.
34#
發(fā)表于 2025-3-27 10:08:43 | 只看該作者
35#
發(fā)表于 2025-3-27 14:44:10 | 只看該作者
36#
發(fā)表于 2025-3-27 19:44:36 | 只看該作者
https://doi.org/10.1007/978-94-011-2102-6olume discretization scheme with an explicit time integration and absorbing inflow/outflow boundary conditions is used. By comparing the numerical solution with measurements a good agreement was obtained.
37#
發(fā)表于 2025-3-27 21:56:53 | 只看該作者
Scattering and Inverse Scattering,ns. A finite volume technique is used for the discretization of the governing equations, which are modified via the artificial compressibility procedure, and steady solutions are obtained by explicit (pseudo-)time marching. For both the configurations examined good agreement with experimental data i
38#
發(fā)表于 2025-3-28 02:07:57 | 只看該作者
Scattering and Inverse Scattering,er equations. The Euler solver uses the artificial compressibility technique in order to find a steady solution. The governing equations are numerically solved using a finite volume discretisation in space and explicit Runge-Kutta integration in time. Artificial damping must be added to the numerica
39#
發(fā)表于 2025-3-28 07:59:22 | 只看該作者
40#
發(fā)表于 2025-3-28 13:36:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和林格尔县| 仙游县| 铁力市| 揭东县| 上林县| 弥渡县| 甘肃省| 广南县| 玛沁县| 普洱| 准格尔旗| 五莲县| 南京市| 新乐市| 彭泽县| 和龙市| 徐水县| 玉溪市| 三都| 阳山县| 宿州市| 师宗县| 普陀区| 荔浦县| 吉木萨尔县| 八宿县| 蚌埠市| 郁南县| 古丈县| 江达县| 涟源市| 保德县| 常山县| 嫩江县| 繁昌县| 西畴县| 鹤岗市| 贵港市| 阿鲁科尔沁旗| 翁源县| 广昌县|